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Abstract

KO, XUEYING, Ph.D., August 2021, Chemical Engineering

Molecular Simulations of Adsorption and Self-Assembly of Surfactants on Metallic

Surfaces (185 pp.)

Director of Dissertation: Sumit Sharma

Surfactant molecules are widely used in the oil and gas industry as corrosion in-

hibitors. These inhibitor molecules are known to self-assemble in various morphologies

at the metal-water interfaces. Despite their wide usage in the oil and gas industry for cor-

rosion mitigation purposes, the selection of corrosion inhibitors is still mostly based on

trial-and-error experimentation, and the mechanisms by which these molecules retard cor-

rosion are still poorly understood. This dissertation focuses on the study of the adsorption

and self-assembly of surfactant molecules of different chemistry and geometry via classi-

cal molecular dynamics of a coarse-grained model. From this research, the following key

findings are made: (a) Hydrophobic interactions between surfactant tails play an important

role in their adsorption and self-assembly on surfaces; (b) The morphology of the adsorbed

surfactant film is dictated by the molecular geometry; (c) Entrainment of oil in surfactant

films improves film integrity and hydrophobicity; (d) A theoretical model was developed

that is able to predict adsorbed morphologies given geometry of surfactant molecules and

their strength of interactions with the surface. It has been shown, via coarse-grained sim-

ulations, that this theoretical model is quantitatively accurate in predicting the adsorbed

configurations for both linear-shaped surfactants as well as asymmetrically shaped surfac-

tant molecules; (e) Lateral hydrophobic interactions can help surfactant molecules adsorb

onto a heterogeneous surface where part of the surface has no interactions with surfactant

molecules.
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1 Introduction

Adsorption of surfactants on metallic surfaces has many applications, including

corrosion mitigation in oil and gas pipelines[1], synthesis of anisotropic metal nanoparticles

[2], modulating electrochemical reactions [3], and tuning the selectivity of chemical

reactions [4]. The direct applicationof interest is the use of surfactants as corrosion

inhibitors to mitigate internal corrosion of oil and gas piplines [5].

Corrosion is a major concern for the oil and gas industry, costing more than $ 7

billion per year in maintenance in the United States (US) alone [6]. Besides the huge

economic loss that can be caused by corrosion, it can also damage the environment,

and sometimes even lead to life-threatening incidents [7]. A popular and cost-effective

way to mitigate internal corrosion in oil and gas pipelines is to inject certain surfactant

molecules in parts-per-million levels into the oil stream. These surfactant molecules, called

corrosion inhibitors, adsorb onto metal-water interfaces and are known to self-assemble in

organized layers to form a protective film of molecular dimensions to retard corrosion [8].

However, the performance of these molecules varies with operating conditions, leading to

unpredictable behaviors and corrosion-related failures. Therefore, there is an urgent need

to design new inhibitor molecules with well-understood and robust corrosion mitigation

capabilities under varying conditions. So far, this endeavor has largely been driven by

trial and error experimentation. This is because a critical knowledge gap exists in our

understanding of the mechanisms of adsorption and self-assembly of these molecules.

1.1 Background

1.1.1 Corrosion

Corrosion is defined as the gradual destruction or deterioration of materials (usually

metals) because of reactions with their environment [9]. It’s an electrochemical process that

involves cathodic (reduction) and anodic (oxidation) reactions. In every corrosion reaction,
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the anodic reaction is the metal oxidation to its ion [9].

M → Mn+ + ne−1 (1.1)

In metallic corrosion, several different cathodic reactions are common [9]:

Hydrogen evolution:

2H+(aq.) + 2e− → H2(g.) (1.2)

Oxygen reduction (acidic solutions):

O2(aq.) + 4H+(aq.) + 4e− → 2H2O(aq.) (1.3)

Oxygen reduction (neutral or basic solutions):

O2(aq.) + 2H2O(aq.) + 4e− → 4OH−(aq.) (1.4)

In an acidic environment, hydrogen evolution is the common cathodic reaction.

Oxygen reduction is also very common because any aqueous solution in contact with

air can produce this reaction. In neutral or basic solutions, oxygen reduction is the

common cathodic reaction. Corrosion is inevitable whenever we have metals like iron

and copper exposed to air or water, and it happens in many industrial settings and is a

major concern requiring significant maintenance and monitoring requirements. However,

by understanding the mechanisms and fundamentals of this process, the cost of corrosion

can be considerably reduced by different corrosion inhibition methods [7], such as via the

use of protective coatings, corrosion-resistant alloys, sacrificial anodes, and/or corrosion

inhibitors. The scope of this proposed research is limited to the modeling the adsorption

behavior of corrosion inhibitors for the oil and gas industry.

1.1.2 Corrosion Inhibitors

A corrosion inhibitor is a chemical substance that, when added in small concentrations

(ppm level) to a corrosive environment (such as into oil and gas pipelines), increases
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corrosion resistance, and thus help to mitigate corrosion[10]. The use of corrosion

inhibitors is considered as one of the most effective and economic ways of mitigating

corrosion in the oil and gas industry. The majority of corrosion inhibitors have been

developed by empirical experimentation, and many of them are proprietary in nature and

thus their composition is not disclosed. Due to these reasons, their inhibition mechanism is

not well understood [9].

Generally, the inhibition mechanism falls into one or more of the three categories

below [8]:

• The corrosion inhibitor is chemically or physically adsorbed on the metal surface and

forms a protective layer and inhibits the cathodic and anodic processes. Most organic

inhibitors are in this category;

• The corrosion inhibitor facilitates the formation of an oxide film on the metal

substrate. In general, they are primarily used for corrosion inhibition of metals and

alloys that demonstrate active-passive transitions;

• The inhibitor acts by reacting with potential corrosive reagents from the solution.

They work effectively in solutions where oxygen reduction is the main corrosion

cathodic reaction but are not very effective in strong acid solutions.

1.1.3 Organic Corrosion Inhibitors

Inhibitors can be classified in different ways, such as their chemical structure (organic

or inorganic), their inhibition mechanism, as oxidants or not oxidants [8]. Almost 80% of

the inhibitors used today are organic compounds that adsorb onto the metal surface. As this

type of inhibitors are widely used in the oil and gas industry, they will be the focus of our

studies.
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Figure 1.1: Typical structure of a generic imidazolinium-type inhibitor. The molecule

consists of a hydrophilic head group, a long hydrophobic tail, and a pendant group.

Organic corrosion inhibitors are often surfactant molecules with a typical three

parts structure. Figure 1.1 shows a typical corrosion inhibitor molecule structure using

imidazolinium-type corrosion inhibitors as an example since they are widely used in the

oil and gas industry. These molecules have a polar functional group and a hydrophobic

tail. The polar head group often contains a heteroatom such as N, O, or S, that is

understood to have strong affinity for the metal surface, and thus promotes adsorption

[11–13]. The hydrophobic tails are long hydrocarbon chains (usually C6-C22) [14]. The

lateral interactions between the hydrophobic tails help form a hydrophobic layer and retard

corrosion [1, 15]. Imidazole, imidazoline, quaternary ammonium, and amid-amine based

surfactants are some of the popular corrosion inhibitors that are used due to their high

efficacy and low toxicity [1, 16, 17].



19

1.1.4 Mechanisms of Corrosion Inhibition by Adsorption of Surfactant Molecules

Extensive experimental studies, such as saturation adsorption data [5], Electrochemi-

cal Impedance Spectroscopy (EIS) [18, 19], Second Harmonic Generation Laser Scattering

[1], and Atomic Force Microscopy(AFM) [20] indicate that organic inhibitor molecules

mitigate corrosion by self-assembly into monolayers or micelles onto metal surfaces upon

adsorption. Several unique characteristics of organic corrosion inhibitors are understood to

determine the effectiveness of corrosion inhibitors. Ramachandran et al. [21] suggest that

for a molecule to be an effective corrosion inhibitor, it should have the following character-

istics: (1) having a polar head group that strongly binds to the metal surface and displaces

water; (2) ability to self-assemble with hydrophobic tails tightly packed to serve as a barrier

for diffusion of water and ions towards the metal; and (3) the molecule should have suf-

ficient solubility and rate of transport towards the metal surface to form a self-assembled

monolayer(SAM) at a much faster rate than the corrosion rate.

Besides adsorption processes, surfactant interactions, water/oil partitioning, precipita-

tion, surfactant interactions, and micellizations also directly influence corrosion inhibition

efficiency [22]. Factors such as temperature and flow condition in the pipeline also affect

inhibition efficiency. Hence, it is not a straightforward task to evaluate corrosion inhibition

efficiency [23]. Many different approaches to describe the effect of corrosion inhibitors

have been discussed in the literature, varying from using simple inhibition efficiencies to

applications of complicated molecular modeling techniques [24]. It is generally assumed

that good surface coverage is essential for effective corrosion inhibition, that is to say, the

degree of protection is directly proportional to the fraction of metal surface covered by the

inhibitor [25, 26].

While experimental observations highlight that corrosion inhibition efficiency is

mainly measured by surface coverage by surfactant molecules, this is a simplistic

assumption. There is limited research on what adsorption morphologies do surfactant
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adsorb, or how these different morphologies change surface coverage, or retard corrosion.

Many different factors, such as the molecular structure of inhibitor molecules, geometries

of inhibitor molecules and the metal-inhibitor interaction could changes the adsorption

behavior of surfactants on metallic surfaces, and needs to be investigated.

1.1.5 Surfactant Adsorption Morphologies

Many previous experimental studies have focused on understanding how surfactants

organize and adsorb on polar surfaces. These studies provide interesting insights on various

factors that seem to govern the adsorption behavior of surfactants on these surfaces.

One method commonly used to understand the adsorption morphologies and

mechanisms was adsorption isotherms. A few different models have been proposed

based on the adsorption isotherms, which are determined by solution depletion methods

traditionally [27]. In general, the adsorption isotherm can be analyzed by the slope

change that indicates a change in the surface excess with concentration. In this way, the

isotherm can be divided into different regions, and the most likely configurations formed

by surfactants on the surface can be inferred.

One early model of the adsorption isotherm is the bilayer model [28]. Using the ni-

trogen Brunauer-Emmett-Teller (BET) method, the adsorption of cetyltrimethylammonium

bromide (CTABr) on silica at high pH was studied [29]. From the adsorption results, it was

suggested that a bilayer of surfactant ions were formed on silica surface (Figure1.2 (right)).

According to this model, the surfactant molecules adsorb from the beginning as bilayers

and full coverage of the surface is reached after the critical micelle concentration (CMC)

[30].
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Figure 1.2: Schematic representations of the different regions of the adsorption

isotherm.(left)reverse orientation model,(right)the bilayer model [31].1

Using luminescence, electron spin resonance, and time-resolved resonance Raman,

Somansundran et al. [31] studied the adsorption of sodium dodecyl sulfate (SDS) on

alumina, and proposed a reverse orientation model of adsorption isotherm. Figure1.2(left)

shows the suggested adsorbed morphologies of adsorbed surfactant molecules in different

region. In region I, molecules start to adsorb due to the surface-surfactant affinity. At higher

surfactant concentration, in region II, adsorption increases due to the aggregate structure

formation on the surface. Surfactants can form hemi-micelles or micelles due to the lateral

hydrophobic interaction between the hydrocarbon tails. In region III, the electrostatic

interaction is less dominant due to the neutralization of the surface by surfactant molecules,

a decrease in adsorption is shown, where most adsorption happens because of the lateral

1 This figure was published in Colloids and Surfaces, Volume 37, P. Somasundaran, Joy T. Kunjappu,
In-situ investigation of adsorbed surfactants and polymers on solids in solution, Pages 245-268, Copyright
Elsevier (1989). Reproduced with permission.
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interaction of the hydrocarbon tails. Some of the molecules adsorb with the head facing the

solution, resulting in a reverse orientation of the surfactant molecules, hence the name of

the model. In region IV, not much adsorption happens because of the micelle formation in

the solution. Maximum surface coverage is determined by micelle formation in the bulk.

Comparing the bilayer model and the reverse orientation model (Figure1.2), the bilayer

model suggested that the hydrophobic tails of the top layer do not penetrate and interact

with the tail groups in the bottom layer.

For nonionic surfactants, they tend to form hydrogen bonds with the surface. Because

of the weaker interaction of hydrogen bonds compared to electrostatic interactions, their

adsorption to most solid surfaces is weaker comapring to ionic surfactants. There is a sharp

increase in region III in the adsorption isotherm for nonionic surfactants, which can be

attributed to the diminished electrostatic interactions. In all other regions, the adsorption

isotherm for nonionic and ionic surfactants show similar characteristics [23].

Atkin et al. [28] suggested that surfactants adsorb into discrete aggregates on the

surface rather than the traditional monolayer/bilayer. Adsorption of ionic surfactants is

controlled by electrostatic and hydrophobic interactions. The adsorption isotherm can be

divided into different spans based on the driving force of adsorption. The three spans are

the electrostatic concentration span, the electrostatic-hydrophobic concentration span, and

the hydrophobic concentration span. Mechanisms of each span are available to surfactant

adsorption at greater concentrations as well. For example, in the hydrophobic concentration

span, hydrophobic interactions are accountable for micelle formation, and as the micelles

approach the surface, the electrostatic mechanisms begin to operate. This model is shown

in Figure 1.3.

These models affirm the two balancing forces of electrostatic interactions (or hydrogen

bonding for nonionic surfactants) and hydrophobic interactions. One key difference is
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the morphology of adsorbed surfactants; another one is that Atkin suggests that direct

adsorption of micelles above the solution CMC is possible.

Although AFM [20, 32], neutron reflectivity [33], optical reflectometry [34], and

some other modern experimental techniques have offered some credible evidence for these

proposed mechanisms of adsorption and adsorption isotherm models, it is challenging to

separate the different factors that govern the adsorption process in an experimental setting.

The hydrophobic tail interactions, surface-polar head group affinities, size of polar head

group, the concentration of surfactant and counter-ions, and length of hydrophobic tails,

etc. can all play a role in the adsorption process, thus changing the adsorbed mophologies

on surfaces. Using computational approaches such as molecular dynamics simulations,

it is possible to systematically study different factors and it can aid in this endeavor to

decipher the adsorption mechanism and determine the effect of hydrophobic interactions

and electrostatic interactions in the adsorption process. In this current work, we employed

molecular dynamics simulations to study the adsorption and self-assembly of surfactant

molecules, and in this next section, a brief discussion on molecular simulations will be

provided.
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Figure 1.3: Proposed mechanism of surfactant adsorption [35].2

1.2 Overview of Molecular Simulations

1.2.1 Molecular Simulation

Computer simulation is the use of computers to represent or imitate the behavior of a

system. Physical, chemical, biological, and astrophysical systems have all been studied

2 This figure was published in Advances in Colloid and Interface Science, Volume 103, Issue 3, R.
Atkin,V.S.J. Craig,E.J. Wanless,S. Biggs, Mechanism of cationic surfactant adsorption at the solid–aqueous
interface, Pages 219-304, Copyright Elsevier (2003). Reproduced with permission.
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using computer simulations over the past decades [36–40]. Computer simulations can

provide valuable results for problems in statistical mechanics, which may otherwise be

hard to study, and act as a good test for theories. The results of computer simulations

can be compared with real experiments, and from this comparison, the model underlying

the simulation can be tested. In this sense, computer simulation acts as a bridge between

theoretical models and experimental results and may offer insights and interpretations of

what we see in real experiments [41, 42].

Molecular simulation is a type of computer simulation wherein the motion of

molecules comprising a physical system is studied. Two of the most often used molecular

simulation methods are Monte Carlo (MC) and Molecular Dynamics (MD). Since in

this work, we have used MD to study inhibitor molecules, I will briefly introduce MD

simulations in the following section. Readers interested in learning about the MC method

can read about it in the literature [41, 42].

1.2.2 Molecular Dynamics Simulation

MD simulation, as the name suggests, use computer to simulate the dynamics

of molecules in a complex system. There are two approaches for MD methods, the

classical MD simulation (often just referred as MD simulations), where atomic and

molecular motions are defined by classical Newtonian mechanics; and the quantum

MD simulation, where the potential energy of the system is calculated using quantum

mechanical techniques, like density functional theory (DFT) [43]. Although quantum MD

simulations are more accurate in estimating the electronic interactions between atoms, it is

computationally more costly and is therefore limited to systems with a relatively small size

and time scale than classical MD simulations. Classical MD simulation is better suited to

study the adsorption process of inhibitor molecules, which involves interactions between a

large number of molecules. When carrying out an MD simulation, the interactions between
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different atoms can be represented using different potential functions, and the mathematical

form and parameters used to calculate these potential functions of the system are called

force field. For any configuration of atoms, forces can be calculated from the force field.

The objective of statistical mechanics is to provide the molecular theory or interpretation

of equilibrium properties of macroscopic systems. It connects the statistical properties of

molecular configurations to thermodynamic properties. For example, the average kinetic

energy is related to temperature. In an MD simulation, wherein each atom in the system can

be explicitly represented, is called atomistic MD simulations. Atoms can also be grouped

together and represented by a united atom or a “bead” , thus reducing the resolution and

increasing the speed thereby providing us the capability of studying larger systems and

longer time-scales. This type of simulation is called coarse-grained MD simulation. The

basic idea of an MD simulation is similar to doing a real experiment in the lab. First, we

prepare a sample: a model system containing N particles; the forces acting on all atoms

are calculated using the potential functions, and then Newtonian equations of motion are

integrated numerically in time to simulate molecular motion. According to the laws of

statistical mechanics, mechanical properties, such as energy, temperature, pressure, etc. can

be calculated as arithmetic averages over molecular configurations. When thermodynamic

properties become time-invariant in the simulations then it is understood that the system has

achieved equilibrium. After equilibrium, the properties of interest for a particular system

will then be measured.

In atomistic MD simulations, the numerical integration of Newtonian equations of

motion is of the order of 10−15 seconds (femtosecond) [41]. To simulate a system over one

nanosecond (ns) requires a million timesteps. In each timestep, forces for every atom need

to be calculated. This is a relatively expensive calculation and takes a large amount of time.

Thus, atomistic MD simulations, in general, can only sample systems for timescales from

1-100 ns. To sample timescales larger than this, CG MD simulation is implemented. In
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doing so, the number of degrees of freedom is reduced, so some details of the system are

lost, however, CG simulations help increase the computational efficiency and provide us

the tools to probe system for a longer time where the adsorption process can be studied.

1.2.3 Coarse-grained Modeling

As stated in the previous section, atomistic MD simulations are suitable to study

systems that are relatively smaller (103 - 105 atoms) and over shorter time scales (∼10 -

1000 ns) while CG simulations can be used to study collective behaviors of relatively large

systems. In the CG models, since different atoms are grouped together into a CG bead,

and the interactions between beads are represented by potential functions. As an example,

a CH3 group can be represented by a single bead. Now, the motion of hydrogens are no

longer modeled, a longer simulation timestep can be used. Furthermore, since the number

of atomic entities are reduced, calculation of forces is also much faster. In our case, the

adsorption of a large number of surfactant molecules can be simulated via CG models.

Previously, Duda et al. performed an MC simulation of corrosion inhibitor molecules

in two dimensions and confirmed that molecular properties such as tail length, interactions

with the substrate, size ratio between head group and tail unit, play an important key

role in the adsorption behavior [17]. Wu et al. studied self-assemblies of ammonium-

based surfactants using the MARTINI force field model, and found that the aggregation

of surfactants has three stages: fast aggregation of monomers into disordered oligomers;

larger aggregates grow by combining smaller ones; micelle formation with stable numbers.

With smaller aggregation numbers (<100), the surfactants form spherical micelles; worm-

like micelles at a larger aggregation number are observed [44]. These CG models offered

insights on key factors in adsorption and self-assembly and helped in the understanding and

developing our own model to study the adsorption and self-assembly behavior of corrosion

inhibitors.
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1.3 Dissertation Outline

Chapter 2 of the dissertation introduces the developed CG model of surfactant

molecules. Using this model, the importance of alkyl tail hydrophobicity in the adsorption

behavior of surfactant molecules is examined. Then the effect of molecular geometry on

the adsorption morphologies, and how surfactant polar head group affinity changes the

kinetics of adsorption are studied. In chapter 3, a theoretical model is develiped to predict

adsorption morphologies of linear surfactant molecules. Linear molecules adsorb on the

surface either in a strip-like configuration with the molecular axes parallel thereon, or in a

self-assembled monolayer (SAM) with the axes perpendicular to the surface. Depending

on the relative energetics of the two configurations, it is demonstrated that the theoretical

model quantitatively agrees with the simulations. In chapter 4, the model described in

chapter 3 is extended to asymmetric molecules and a discussion of the difference in

adsorbed configurations is provided. How the model can explain the different kinetic

pathways of adsorption of surfactant molecules on polar surfaces is also discussed here.

Chapter 5 of the dissertation investigate how exposure to oil molecules affects the nature

of the adsorbed corrosion inhibitor films on metal surfaces, where after introduction of

a hydrocarbon phase into the system, how these oil molecules interact with corrosion

inhibitors and thus change the adsorbed inhibitor film is investigated. In chapter 6, the

adsorption behavior of surfactant molecules on a surface that is heterogeneous in its affinity

for the molecules is investigated. This is to help understand the issue that, particularly

in field conditions, the surface is always not uniform and corrosion inhibitors may have

different affinity to different regions of the surface. In chapter 7, a semi-empirical model

that links the rheology of surfactant mixtures to thermodynamics parameters is described.

Chapter 8 provided some discussions of future work of this presented research.
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2 The Role of Tail Hydrophobicity, Molecular Geometry

and Surface Affinity on Inhibitor Adsorption3

2.1 Introduction

Metal-water interfaces are ubiquitous in heterogeneous catalysis [45] and electro-

chemical reactions [46]. The ability to adjust properties of these interfaces via adsorp-

tion of surfactants has found applications in corrosion inhibition [47], electrochemistry

[3], biomimetic design [48], fuel cells [49] and energy storage [50]. The direct applica-

tion of interest is the use of surfactants as inhibitors of aqueous corrosion of metals in oil

and gas pipelines. Organic, surface-active amphiphilic molecules have been found to be

effective corrosion inhibitors. [5, 16, 47] These molecules contain both hydrophobic (non-

polar “tail”) and hydrophilic (polar “head”) groups. The hydrophobic tails are long alkyl

groups (usually C6 to C22), while hydrophilic heads are either non-ionic or ionic functional

groups. Imidazoline, quaternary ammonium, amide and amido-amine based surfactants are

popular corrosion inhibitors because of their low toxicity and high efficacy [1, 16, 17]. Due

to their amphiphilic nature, these molecules adsorb on to metal-water interfaces and alter

the nature of electrochemical reactions [18]. However, the performance of these com-

pounds is found to vary with operating conditions leading to unpredictable behavior and

many corrosion-related failures [47, 51]. Hence, there is a need to design new inhibitor

molecules with well-understood and robust corrosion mitigation capabilities under vary-

ing conditions. So far, this pursuit has largely relied on trial and error experimentation

[47, 52–55] because a fundamental understanding of the relationship between adsorption

characteristics and molecular properties of surfactant molecules has been lacking.

3 Adapted with permission from Ko, X., & Sharma, S. (2017). Adsorption and self-assembly
of surfactants on metal–water interfaces. Journal of Physical Chemistry B, 121(45), 10364-10370.
Copyright(2017) American Chemical Society.
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Adsorption of surfactant molecules on hydrophobic surfaces is mainly driven by

hydrophobic interactions between the alkyl tails and between the alkyl tails and the surface

[56, 57]. As a result, hemi-cylindrical or hemi-spherical structures are observed in the

adsorbed phase [56, 58]. On polar surfaces, initial stages of adsorption of surfactants

is driven by the affinity between the polar head groups and the surface and/or adsorbed

counter-ions [53]. In later stages, lateral hydrophobic interactions between the alkyl tails

are understood to promote adsorption. [59, 60] The resulting adsorbed phases manifest

many different morphologies, such as self-assembled layers or cylindrical or spherical

micelles. [3, 61, 62] Adsorption isotherms of quaternary ammonium based surfactants

with longer alkyl tails are observed to shift towards lower concentrations in comparison

to the ones with shorter tails, highlighting the importance of hydrophobic interactions

in promoting adsorption [63, 64]. Whereas, equilibrium adsorbed concentrations of

imidazoline-based surfactant molecules on metal-water interfaces have been reported to

be invariant of the alkyl tail length [1]. These seemingly contrary results on the role of

alkyl tails on adsorption have not been reconciled.

Alkyl tails of adsorbed surfactants are known to affect interfacial properties; for

example, molecules with small alkyl tails (< C6) show a significantly reduced corrosion

inhibition efficiency [1]. The inability of small alkyl tails to form an effective hydrophobic

barrier is often cited as the reason for these observations. For corrosion inhibition

and electrochemistry applications, complete coverage of metal-water interfaces with

surfactants is desired to achieve electrochemical “blocking” [3, 5]. The premise that

adsorption is chiefly governed by the interaction between polar groups and the surface has

prompted researchers to test surfactants with highly polar head groups comprising of bulky

heterocyclic and aromatic groups [47]. However, little importance is given to understanding

how the size of the polar head group impacts the nature of the adsorbed layer. Hence,
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there is a need to perform a systematic investigation of how different molecular features of

surfactants affect their adsorption characteristics on metal-water interfaces.

In this work, we employ molecular simulations to understand how the hydrophobic

character of the alkyl tail and the size of the polar head group of the surfactants affect

their adsorption behavior on a metal surface. It is found that tail hydrophobicity plays

an important role in driving adsorption and self-assembly of surfactant molecules. The

geometry of the molecule dictates the aggregation morphology in the adsorbed and the

bulk phases.

2.2 Methods

2.2.1 Simulation System

A coarse-grained bead-spring model is used to represent surfactant molecules. All

quantities in the simulation system are defined in reduced units of energy, mass and length,

and therefore the results can be translated into real units by appropriate conversions [65].

In this model, one terminal bead of a surfactant molecule is the polar head bead and the

remaining beads are hydrophobic and form the tail. The beads are connected via bonded

interactions modeled using a harmonic potential. The angles between adjacent bonds

in a surfactant molecule are restrained via angular harmonic potentials centered at 180◦.

Water molecules are not modeled explicitly. An effective attractive interaction between the

hydrophobic tail beads incorporates the hydrophobic effect. This interaction is modeled

as a Lennard Jones (LJ) potential with a well-depth ε (arbitrary energy units) and the

length parameter σ (arbitrary length units). The polar beads interact with all other beads

via a purely repulsive Weeks-Chandler-Andersen (WCA) potential [66]. WCA potential

comprises of only the repulsive part of the LJ potential. The basis of employing this

potential is the understanding that the interactions of a polar group with water and with

other polar and hydrophobic groups are similar in magnitude and length-scale in an aqueous
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medium. As a result, there are no net attractive interactions between two polar groups or

between a polar group and a hydrophobic group in aqueous medium [67]. The surface is

represented by a smooth wall at Z = 0. The strong affinity between the polar beads of

the surfactant molecules and the surface is modeled by a 9-3 interaction potential with the

well-depth parameter εs. The hydrophobic beads do not have attractive interactions with the

surface. Reflective boundary conditions at Z = 0 are used to prevent the hydrophobic beads

from crossing the surface. To keep the simulation volume constant, reflective boundary

conditions are used for all beads for the face opposite the surface in the simulation box.

The simulation box is periodic in the X and Y dimensions. The X and Y dimensions of the

simulation box are kept fixed at 20σ×20σ. The Z dimension (the dimension perpendicular

to the surface) is chosen to ensure that the number density of the beads in the system is

maintained at 0.5σ−3. Hence, for 400 molecules of 20mers, the Z dimension is 40σ. The

mass of each bead, m, is taken as 1 (arbitrary mass units).

2.2.2 Simulation Details

Langevin dynamics molecular simulations are performed at a fixed temperature of

1.0 ( temperature units, KBT/ε) and a damping constant of 0.1 (time units, (ε/mσ2)0.5t )

[56]. In order to study the role of hydrophobic character of the tails on adsorption, the

LJ well-depth parameter for the interactions between the hydrophobic beads, ε is varied

from 0.01 to 0.11 in a series of simulations. The rationale behind choosing these values

is that for ε = 0.05, the total interaction energy between two surfactant molecules is

O(KBT ), in accordance with the observed potential of mean force between two ∼ 1nm

sized hydrophobic solutes. [68] The well-depth of the interaction between the surface

and the polar bead, εs is kept at a fixed value of 5.0. This value is chosen to match the

interaction energy obtained from density functional theory (DFT) calculations of polar

groups on metal surfaces [69]. The bond and angle harmonic potential coefficients are
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set to 100 (energy units/σ2) and 50 (energy units/radians2) respectively. Simulations of

20mer surfactant molecules are performed for different values of ε at a fixed monomer

number density of 0.5σ−3 (a 20mer molecule has one polar head bead and 19 hydrophobic

tail beads). To study the effect of the size of the polar head group, three different values

of polar bead’s WCA length-scale parameter, σP : σ, 1.5σ and 2σ, are chosen. The WCA

well-depth parameter, εP is kept fixed at 1.0. Along with these simulations, Langevin

dynamics simulations in the bulk (that is, in absence of a surface) is also performed in

order to study bulk aggregation behavior. While the size of the polar beads is changed,

their mass is kept the same. Hence, the same damping constant of 0.1 (time units) is kept

in all the simulations. All simulations are performed using Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS) MD simulations package. [70] Typically, for

each simulation, the system is first equilibrated for 3 − 8 × 108 MD steps with a time

step of 0.001, followed by a production run of 8 − 16 × 108 MD steps. Equilibration is

understood to be achieved when no change in the ensemble averaged surface adsorbed

amount, orientation factor (discussed below) and energy of the system is observed.

2.3 Results and Discussion

2.3.1 Effect of Tail Hydrophobicity on Adsorption Behavior

In the first set of simulations, the ε (the LJ well-depth parameter between hydrophobic

beads) is varied from 0.01 to 0.09 while keeping all other parameters fixed and with

σP = σ. By changing the value of ε, one can evaluate how the hydrophobic character

of the tail affects the adsorption behavior. Figure 2.1(a) shows the number of adsorbed

molecules as a function of ε. For small values of ε(< 0.04), low levels of adsorption

are observed. Above ε = 0.04, a sharp increase in equilibrium adsorption is seen, which

reaches a maximum for ε = 0.065. Beyond ε = 0.065, a decrease in the equilibrium

adsorption is seen. Figure 2.1(b) shows snapshots corresponding to three different ε values
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(1) ε = 0.03, (2) ε = 0.065, and (3) ε = 0.08. Clearly, for ε = 0.03, the molecules

adsorb in random orientations on the surface. For ε = 0.065, a self-assembled monolayer

(SAM) in the adsorbed state is observed while the molecules in the bulk are randomly

oriented. For ε = 0.08, the molecules aggregate in both bulk and adsorbed phases as

laminar micelles. Hence, as ε is increased from 0.04 to 0.065, the adsorption regime

changes from low, random adsorption to an adsorbed SAM. Beyond ε = 0.065, molecular

aggregates are formed in the bulk, and the molecules do not diffuse towards the surface,

thereby decreasing adsorption. Figure 2.1(c) shows radial distribution function of center of

mass of the adsorbed molecules in the plane of the surface (the XY plane), RDFxy(r) for

ε = 0.065 and ε = 0.03. The RDFxy for ε = 0.03 resembles that of a low density phase

with no local order, while for ε = 0.065, the RDFxy(r) shows regular peaks corresponding

to the ordered structure of the SAM. The gradually decreasing peaks indicate that the SAM

is not a solid but has fluid-like behavior.
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Figure 2.1: Adsorption behavior of surfactant molecules with σP = σ. (a) The number

of adsorbed molecules, N as a function of ε. The molecules with their center of mass

within a distance of 6σ from the surface are counted as adsorbed. This criterion is based

on the observed density profile of the center of mass of the molecules as a function of the

distance from the surface (Figure 2.2). Error bars in this figure are standard deviations of

ensemble averages calculated from 3-5 independent simulations. The line is a guide to the

eye. (b) Snapshots of the system for ε = 0.03 (low adsorption), ε = 0.065 (self-assembled

monolayer), ε = 0.08 (laminar micelles in the bulk and on the surface). The surface is

shown as a yellow plane. The molecules are shown as green (hydrophobic) and blue (polar)

beads. (c) Radial distribution function of center of mass of the adsorbed molecules in the

XY plane for ε = 0.03, which corresponds to low adsorption regime, and ε = 0.065, which

corresponds to the adsorbed self-assembled monolayer.
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Figure 2.2: Density profile of center of mass of surfactant molecules as a function of

distance from the metal surface, z for σP = σ and ε = 0.065.

The adsorption behavior observed above can be understood by analyzing the

orientation factor of the molecules on the surface and in the bulk as a function of ε (Figure

2.3). The orientation factor, S is defined as the largest eigenvalue of the tensor Q, the

elements of which are given by [71]:

Qαβ =
1.5
Nt

Σ
Nt
i=1|niα.niβ| −

1
2
δαβ (2.1)

where niα and niβ are the α and β components of the end-to-end vector of the molecule i

respectively. δαβ = 1 if α = β and 0 otherwise. Nt is the total number of molecules in the

system. If all the molecules are perfectly oriented parallel to each other, then S = 1. For a

completely random orientation, S = 0.5.

Figure 2.3 shows S as a function of ε for bulk and adsorbed phases. For ε < 0.04, S is

small in the adsorbed phase indicating random orientation of the adsorbed molecules. For

ε > 0.04, a sharp increase in the value of S in the adsorbed phase is observed. This indicates

that as ε increases, the adsorbed molecules start aligning parallel (or anti-parallel) to each
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other. For ε > 0.06, S is close to 1, indicating formation of a near-perfectly aligned SAM.

Interestingly, in the bulk phase, the value of S remains small up to ε = 0.065. This implies

that while the molecules prefer to align parallel to each other in the adsorbed phase for

0.04 < ε < 0.065, they remain randomly oriented in the bulk phase. Only for ε > 0.065,

a sharp increase in the value of S in the bulk phase is observed, indicating formation of

aggregates or laminar micelles, which decreases the adsorption as seen in Figure 2.1. It is

important to remember that the interaction strength between the polar beads and the surface

is kept constant in these simulations. These results show that the hydrophobic interactions

between surfactant tails promote adsorption and self-assembly on the surface.

Figure 2.3: Orientation factor, S of molecules with σP = σ in the bulk and the adsorbed

phases. A large value of S (∼ 1) implies strong orientation of molecules parallel or

antiparallel to each other. A small value of S (∼ 0.5) corresponds to random orientation

of the molecules with respect to each other. Error bars are standard deviations of ensemble

averages calculated from 3-5 independent simulations. Lines are guide to the eye.
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2.3.2 Effect of the Size of the Polar Head Group

In the next set of simulations, the size of the polar head bead, σP is increased from σ

to 1.5σ and 2σ while keeping the size of the hydrophobic beads fixed at σ = 1. For each

value of σP, the value of ε is varied as before. All other potential parameters are kept fixed.

2.3.2.1 Adsorbed Amount

To understand the effect of σP on the adsorbed amount, one can naively compare

the number of adsorbed molecules, N in each case (Figure 2.4(a) inset). However,

this comparison will be misleading because with an increase in σP, the footprint of the

molecules adsorbed with their polar bead towards the surface will be larger, and hence

fewer molecules will be expected to get adsorbed. Instead, a fair comparison is to consider

the fraction of the surface area covered by the molecules, or surface coverage, for different

values of σP. The surface coverage is calculated as,

surface coverage =
fπσ2

p + (1 − f )πσ2

4A
(2.2)

Where f is fraction of the adsorbed molecules with their polar head group pointing towards

the surface, and A is the total surface area.
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Figure 2.4: Comparison of adsorption behavior of surfactant molecules with different

values of σP. (a) Surface coverage (defined in the text) as a function of ε. Inset shows

the number of adsorbed molecules, N for each σP as a function of ε. (b) The number of

aggregates of adsorbed molecules for each σP as a function of ε. The aggregates are found

using the 2D cluster algorithm described in the text.
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Figure 2.4(a) shows surface coverage for the three values of σP as a function of ε.

The low adsorption regime, observed for ε < 0.04, is dictated by attractive interactions

between the polar beads and the surface, which are the same for the three values of σP.

In this regime, the number of adsorbed molecules is about the same for the three cases

(Figure 2.4(a) inset), and as a result, the surface coverage is highest for the largest σP. The

surface coverage increases with ε for the three cases, but shows weaker dependence on ε

as the value of σP increases. The maximum surface coverage, while almost invariant of

the size of the polar head group, for σP = 2σ is observed at a higher value of ε(∼ 0.1).

Interesting differences in the nature of the adsorbed layer for the three cases explain this

observation. Figure 2.4(b) shows the number of surface aggregates or 2D clusters observed

for the three cases. The methodology to find 2D clusters in the adsorbed phase is similar to

one employed previously [72] and is briefly is described as follows: the monomers which

are within a distance of 1.5σ from the surface are projected on to the plane of the surface.

The surface is divided into square boxes of length 0.2σ. For each square box, if there

exists a monomer whose surface projection is within an in-plane cut-off distance of 0.8

times σ (hydrophobic bead) or σP (polar bead) from the center of the square box, then the

box is labeled as “occupied” or else is labeled as “vacant”. Adjacent occupied boxes are

considered part of one cluster. For σP = σ and 1.5σ, as ε increases, the number of surface

aggregates decrease and eventually reach 1 indicating formation of a monolithic adsorbed

layer. On the other hand, for σP = 2σ, the number of surface aggregates remain large as the

ε is increased. For this case, as ε increases the adsorbed molecules tend to aggregate into

cylindrical micelles (discussed below), and hence do not form a SAM as seen for smaller

values of σP. We do not have a good explanation for the observed difference in the number

of 2D clusters between the σP = σ and σP = 1.5σ cases for small values of ε.
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2.3.2.2 Micelle Formation

To study the nature of aggregation of surfactant molecules in the bulk as well as in

the adsorbed phase, we identify clusters of molecules using the Density-based Spatial

Clustering of Applications With Noise (DBSCAN) algorithm [73]. This algorithm is useful

for finding clusters in a collection of points in space. It works in the following manner: for

a point p, if the number of points within a distance rcut are above a cut-off value, Ncut, then

the points are “directly reachable” to the point p. All points which are directly reachable

to each other form part of a “cluster”. After identifying the clusters of monomers using

the DBSCAN algorithm, we determine the size and the shape of each cluster by finding

the principle eigenvalues of the radius of gyration squared tensor of each cluster. From the

principle eigenvalues, the following quantities are defined [74]:

Radius of gyration squared,R2
g = λ1 + λ2 + λ3 (2.3)

Asphericity, b = [λ1 −
1
2

(λ2 + λ3)]R−2
g (2.4)

Acylindricity, c = [λ2 − λ3]R−2
g (2.5)

Where, λi are the eigenvalues and λ1 > λ2 > λ3 is the relative magnitude of the three

eigenvalues.

A perfectly spherical cluster/micelle will correspond to b = 0. Similarly, a perfectly

cylindrical cluster will correspond to c = 0. However, since even for a spherical cluster,

the value of c will be close to 0, in order to classify a cluster as cylindrical, one needs

to consider asphericity and acylindricity together. Figure 2.5(a) shows asphericity and

acylindricity of the largest cluster of monomers identified for σP = 2σ for different values

of ε in the bulk and in the adsorbed phase. In both the phases, the acylindricity is small
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Figure 2.5: (a) Different shape factors evaluated for the largest cluster identified for

molecules with σP = 2σ in the bulk and the adsorbed phase. (b) A snapshot of the

simulation system with σP = 2σ and ε = 0.11. Different clusters identified by the

DBSCAN algorithm are shown via different colors. Cylindrical micelles in the bulk and

the adsorbed phases are clearly identifiable.

while the asphericity is large, which clearly indicates the formation of cylindrical micelles.

While we focus here only on the largest cluster, similar behavior is observed for other

clusters as well. Figure 2.5(b) shows a snapshot of the system for ε = 0.11. One can

easily identify distinct cylindrical micelles in both the adsorbed and the bulk phases. For

the case of σP = 1.5σ, the state of the system is more complicated. For σP = 1.5σ,

Figure 2.6(a) and Figure 2.6(b) show asphericity and acylindricity of the largest cluster in

the bulk and the adsorbed phase respectively. In both the bulk and the adsorbed phase,

the acylindricity and the asphericity are similar in magnitude thereby demonstrating only a

weak tendency of the molecules to form cylindrical micelles. As a result, it was not possible
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to assign a distinct geometrical shape to these clusters (Figure 2.7 shows one snapshot of

the system for σP = 1.5σ and ε = 0.07). Note that in Figure 2.5 and Figure 2.6, no data

points are shown for small values of ε for which no clusters are identified. For the case of

σP = σ, the orientation factor, S shows formation of laminar micelles in the bulk and the

adsorbed phase. Hence, we do not evaluate acylindricity and asphericity shape factors for

this case. Observation of laminar and cylindrical micelles for the σP = σ and σP = 2σ

cases respectively can be explained via calculation of Critical Packing Parameter (CPP)

[75]. CPP is a dimensionless number given by V/(AL), where V is the volume of the tail

of the surfactant, A is the area of the surfactant head and L is the tail length. The CPP is

calculated by assuming the tail to be a cylinder with excluded volume, V = πσ2L, and the

polar head excluded area, A = π
(
σP+σ

2

)2
. For σP = σ, the CPP ∼ 1, which suggests that

the molecules will aggregate in laminar micelles, while for σP = 2σ, CPP ∼ 0.44 < 0.5,

which corresponds to cylindrical micelles. [75] From the above results, it is deduced

that the adsorbed morphologies depend on the geometry of the surfactant molecules and

correspond to bulk aggregation morphologies, a phenomenon which has been observed in

AFM studies of adsorption of surfactants on surfaces [35].
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Figure 2.6: Acylindricity and asphericity of the largest cluster identified for σP = 1.5σ as

a function of ε for (a) the bulk phase, and (b) the adsorbed phase.
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Figure 2.7: A snapshot of the simulation system for σP = 1.5σ and ε = 0.07. Clusters

identified by the DBSCAN algorithm are shown in different colors. A monolithic adsorbed

layer is seen.
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2.3.2.3 Nature of the Adsorbed Layer

Figure 2.8 shows the fraction of adsorbed molecules with their polar head group

pointing towards the surface, f , as a function of ε for the three values of σP. For small

values of ε(< 0.04) corresponding to low adsorption, f is large (> 0.8) for all σP, as

this adsorption regime is dominated by the attractive interaction between the polar head

groups and the surface. For σ = σ, at first f increases with ε as the adsorbed molecules

start aligning parallel to each other. However, beyond ε = 0.05, f decreases with ε. The

decrease in f is concomitant with the formation of a SAM. The formation of the SAM is

dominated by hydrophobic interactions between the tails of the adsorbed molecules, and

the polar bead - surface interactions are not significant enough to cause flipping of the

adsorbed molecules to have their polar beads towards the surface. Hence, the SAM (at

ε = 0.065) is patchy with ∼ 30% molecules adsorbed with their polar bead pointing away

from the surface. This is an interesting revelation about the nature of the SAM, which is

often presumed to form a uniformly hydrophobic layer of adsorbed surfactants. [3, 20]

For σP = 1.5σ, a monotonic decrease in the f as a function of ε is observed. This is a

consequence of geometric considerations of efficiently packing molecules with different

sized polar and hydrophobic beads on the surface. For σP = 2σ as well, a monotonic

decrease in the f as a function of ε is observed. While for σP = 1.5σ, a monolithic

adsorbed layer is formed, for σP = 2σ, cylindrical micelles form in the adsorbed phase

as ε increases, which results in the monotonic decrease in f . Hence, it is observed that the

adsorbed layer of surfactant molecules is patchy with both hydrophobic and polar groups

exposed to the solution.
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Figure 2.8: Fraction of the adsorbed surfactant molecules with their polar groups pointing

towards the surface, f as a function of ε for different values of σP. Lines are guide to the

eye.

While the focus of this study has been the adsorption of 20-mer surfactant molecules,

the adsorption of 10-mer and 30-mer surfactant molecules were also studied. Since the

bond length in the model is 0.3σ, the length to diameter aspect ratio of 20-mer, l/d ∼ 6.

Whereas, for the 10-mer molecule, l/d ∼ 3, which is found to be too small to form a stable,

adsorbed SAM. Hence, the adsorption behavior of 10-mer surfactants is not interesting

for the study of self-assembly of surfactants upon adsorption. On the other hand, 30-mer

surfactant molecules show a similar adsorption behavior as the 20mer surfactant molecules

(Figure 2.9). From the Figure 2.9, it is observed that for the 30-mer case, highest adsorption

is achieved at a smaller value of ε(= 0.048) as compared to the 20-mer case. This is

expected as 30-mer molecules will have stronger hydrophobic attraction than the 20-mer

molecules for the same ε. Furthermore, it is observed that the maximum adsorption for 30-

mer molecules (∼ 280) is less than that seen for 20-mer molecules (∼ 316). It is believed
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Figure 2.9: The number of adsorbed molecules, N as a function of ε for 20-mer and 30-mer

surfactants with σP = σ.

that the origin of this difference is the larger entropy loss associated with adsorption for the

30-mer case. This aspect is currently being investigated in more detail using free energy

calculations, and it will be a subject of a future publication.

2.3.3 Effect of the Affinity between Polar Head Group and Surface

It is found that in this system, the adsorption of corrosion inhibitor molecules occurs in

three stages (Figure 2.10) [76]. In the first stage, most inhibitor molecules quickly adsorb

onto the surface with their polar group towards surface. This is due to the strong interaction

between surface and polar head group. In the second stage, the rate of adsorption is slower,

and some molecules adsorb with their polar group pointing away from the surface. In the

last stage, no further increase in the molecules adsorbed with their polar group towards

surface is observed and molecules only adsorb with their polar head group pointing away
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from surface. In the last stage, adsorption is driven by lateral hydrophobic interactions

between the tails.

Figure 2.10: Kinetics of adsorption of corrosion inhibitor molecules. The red curve shows

adsorption of molecules with their polar group towards the surface. The blue curve shows

total number of adsorbed molecules. Adapted with permission from Sharma et al. [76].

In all the results discussed above, the affinity between the surface and the polar

head group is εs=5, which represents strong affinity between inhibitor and metal surface.

To study how this affinity affects adsorption, we have varied the strength of εs in the

simulations. The interaction between the hydrophobic tails is kept at ε=0.065. Figure 2.11

shows kinetics of adsorption with different values of εs. From Figure 2.11, it is observed

that upon reducing the strength of εs, the rate of adsorption is reduced for both the first and

the second stages. However, we find that the overall equilibrium adsorption amount does

not vary significantly, indicating that a SAM of similar packing density is formed. This is
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because the adsorption is dictated by lateral hydrophobic interactions between alkyl tails

and not by the affinity of the polar group with the surface.

Figure 2.11: Total number of molecules adsorbed as a function of simulation time for

different values of the affinity between polar head group and metal surface, εs.

Figure 2.12 shows the number of molecules adsorbed with their polar group towards

the surface as a function of time for the same simulation trajectories as in Figure 2.11. Here,

it is found that the equilibrium adsorption amount is different for different values of εs. This

indicates that the affinity between the polar head group and surface changes the fraction of

molecules adsorbed with polar group toward surface, and thus changes the nature of the

adsorbed corrosion inhibitor film. A weaker affinity will result in less molecules adsorbed

with their polar group towards surface, and thus a less hydrophobic film.
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Figure 2.12: Number of molecules adsorbed with their polar group towards the surface as

a function of simulation time for different values of affinity between the polar head group

and metal surface, εs.

2.4 Conclusions

Adsorption of surfactant molecules on metal-water interfaces is a useful mechanism

for tuning interfacial properties, and has found applications in a wide range of fields.

The goal of this work is to study how different molecular properties of surfactant

molecules affect their adsorption characteristics. From our simulations, it is found that

tail hydrophobicity plays a significant role in adsorption. When the tail is only weakly

hydrophobic, only low levels of adsorption are observed even though the polar groups have

strong affinity for the surface. For more hydrophobic tails, a SAM in the adsorbed phase

is formed. In this regime, adsorption is dominated by hydrophobic interactions between



52

the tails, a phenomenon which has also been reported in experiments [69]. For surfactants

with a larger polar head group than the hydrophobic monomers in the tail, the effect of

tail hydrophobicity on surface coverage via adsorption is found to weaken. Nevertheless,

the maximum surface coverage is found to be almost invariant of the size of the polar

head group. These results explain the experimental observations wherein, for the case of

small polar head groups, such as quaternary ammonium derivatives, a dramatic effect of

the tail hydrophobicity on adsorption is reported, [60, 64] while for the case of bulky polar

groups, such as imidazoline based groups, adsorption is found to be invariant of the tail

hydrophobicity [51]. It is observed that the adsorbed surfactant layer is patchy with a good

fraction of the polar groups in the adsorbed phase pointing towards the solution. This

observation is contrary to the assumption that the adsorbed SAM manifests a uniformly

hydrophobic interface to the solution [3, 20, 21]. It is also found that in accordance

with the experimental observations, the molecules adsorb in micellar structures similar

to those observed in the bulk phase [56, 77]. That is, the molecules which have tendency to

form cylindrical micelles in the bulk, adsorb as cylindrical micelles rather than forming a

mono/bilayer. Finally, it is found that metal-polar head group interactions change the nature

of adsorbed corrosion inhibitor films. Total number of molecules absorbed into a SAM does

not change with affinity of metal surfaces and polar head group, but the overall hydrophobic

character of the film decreases with decrease in the metal-polar head interaction strength.

In experimental studies, the role of tail hydrophobicity is investigated by studying the

adsorption behavior of surfactants with different tail lengths. Longer tails are expected

to have more conformational entropy loss upon adsorption in comparison to smaller tails.

Furthermore, surfactants with longer tails will have different transport and aggregation

properties. In this work, the hydrophobic character of surfactant tails is changed while

the tail length is fixed. This strategy may not have a direct experimental analogue, but is

useful in isolating the role of hydrophobic interactions from other concomitant effects that
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arise from varying the alkyl tail length. Similarly, by changing the size of the polar head

group without changing its interaction strength with the surface, we study the role of polar

group size in isolation of other effects. In summary, this work concludes that the nature

of the hydrophobic tail and the polar head group play an important role in the adsorption

characteristics of surfactant molecules, and these factors should be taken into account for

rational design of these molecules for different applications.
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3 A Quantitatively Accurate Theory To Predict Adsorbed

Configurations of Linear Surfactants on Polar Surfaces4

3.1 Introduction

Adsorption of surfactants on polar surfaces has numerous applications, including

in corrosion inhibition[1], electrochemical reactions[3], synthesis of anisotropic metal

nanoparticles[2], and heterogeneous catalysis[4]. Surfactants are known to adsorb onto

polar surfaces in various morphologies, such as (hemi-) cylinders, (hemi-) spheres,

or planar micelles[56, 78]. Morphology of adsorbed surfactant films is an important

determinant of interfacial properties[79, 80]. An ingenious thermodynamics-based theory

for predicting adsorbed morphologies of surfactants on hydrophobic and hydrophilic

surfaces was introduced by Johnson and Nagarajan[81, 82]. However, it was not widely

adopted because its predictions for hydrophilic surfaces did not match atomic force

microscopy results and it required thermodynamic parameters like chemical potential of

surfactants in different aggregation states, which are not easily obtainable from experiments

or computer simulations.

Linear surfactant molecules, that is, molecules with a linear alkyl tail and a polar

head group commensurate in size with an alkyl group, may adsorb as stripes with their

molecular axes parallel to the surface and to each other[62, 83] or as a selfassembled

monolayer (SAM) with their molecular axes perpendicular to the surface[84, 85]. However,

there is no theoretical formalism for a priori predicting which configuration will be

favored. Furthermore, experiments have revealed different kinetic pathways associated

with the formation of a SAM of adsorbed surfactants on polar substrates like mica and

gold. For instance, adsorption of octadecylphosphonic acid[86, 87] and octadecyltrimethyl

4 Adapted with permission from Sharma, S., Singh, H., & Ko, X. (2019). A quantitatively accurate theory
to predict adsorbed configurations of linear surfactants on polar surfaces. Journal of Physical Chemistry B,
123(34), 7464-7470. Copyright(2019) American Chemical Society.
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ammonium bromide (C18TAB)[84] on mica initiates with nucleation of densely packed

molecular islands followed by growth and coalescence of these islands into a contiguous

adsorbed monolayer[86, 87]. The adsorption and selfassembly of alkanethiols on gold

follow a different kinetic pathway. It comprises two steps: in the first step, the molecules

completely cover the gold surface by adsorbing parallel to the surface in the form of stripes.

The second step involves an orientational transition wherein the molecules “stand up”

on the surface with their molecular axes parallel to the surface normal[88]. A similar

orientational transition has been reported in other studies of alkanethiols on gold[89]. So

far, there exists no theoretical basis to predict when one pathway is favored over the other.

In this work, we introduce a mathematical model to predict adsorbed configurations of

linear surfactants on polar surfaces. From molecular simulations, we show that our model’s

predictions are quantitatively accurate without the need of any fitting parameters. The

model is based on the idea that linear surfactant molecules in the lying-down configuration

maximize their interactions with the surface but also occupy a larger surface area. The

standing-up configuration, on the other hand, allows more molecules to adsorb on the

surface. In the lyingdown configuration, the molecules optimize their intermolecular

interactions to eventually form a stripe morphology, while the standing-up configuration

ultimately results in a SAM. Based on our theory, the kinetics associated with the formation

of a SAM can also be predicted. The details of our theoretical model are discussed below.

3.2 Theoretical Model

Consider a surfactant molecule with a polar head group and an n carbon long alkyl

tail. When these surfactant molecules are lying flat on a solid surface, the total interaction

energy is given by

EL = (εL
HS + nεL

TS )
A

AL
m

PL (3.1)
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where the superscript L indicates the lying-down configuration, εHS is the interaction

strength of the polar head with the surface, εTS is the interaction strength of a tail group with

the surface, A is the total adsorption surface area, Am is the area occupied by one surfactant

molecule, and P is the packing fraction of the molecules adsorbed on the surface. In the

standing-up configuration, the total interaction energy is given by

ES = εS
HS

A
AS

m
PS (3.2)

The superscript S indicates the standing-up configuration. Equations 3.1 and 3.2 are

applicable to surfactant molecules of any geometry. PS can be estimated as PS = N AS
m

A ,

where N is the number of molecules adsorbed in the standing-up configuration. For a linear

surfactant molecule, approximated as a cylinder, AL
m = ld, AS

m = πd2

4 and PL ≈ 1 , where l

is the length and d is the diameter of the cylinder. Furthermore, if the interactions of the

polar head and the tail groups are isotropic, that is, they do not depend on the adsorbed

configuration, then the subscripts L and S from the interaction terms may be dropped. The

ratio of eqs 3.1 and 3.2 thus becomes

EL

ES =
πd

4lPS

(
1 +

nεTS

εHS

)
(3.3)

If the ratio EL

ES < 1, standing-up configurations are favored, which will eventually lead to

formation of a SAM.

3.3 Simulation System and Methods

To test the validity of the theory, we have performed Langevin dynamics simulations

to determine adsorbed configurations of linear surfactant molecules with different values

of εTS and εHS on a polar solid surface. Surfactant molecules are modeled as linear bead-

spring chains, same as in our previous study[90]. The first bead of the molecules represents

the polar head group, and the remaining ones represent the alkyl tail. We have studied

surfactant molecules comprising [65] beads. The interactions of the surface with the polar
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head and the tail beads are modeled via 9-3 potential, which is the potential function

obtained when the Lennard-Jones (LJ) potential is integrated over a semi-infinite slab. The

solvent is treated implicitly in these simulations. All quantities in the simulation system

are in reduced units[65]. In these units, the thermal energy kBT is taken as the unit of

energy, and thus, kBT = 1. The interaction between any two tail beads is modeled via

the LJ potential with εTT = 0.065 and σ = 1. This value of εTT results in formation of a

SAM for the case when there is no interaction between the alkyl tail and the surface, that

is εTS = 0.19 The overall hydrophobic interaction between two alkyl tails is of the order of

kBT [68]. The magnitude of εHS matches binding energies between polar groups and metals

determined from the density functional theory[69]. With σ taken as the unit of length in

reduced units, the equilibrium bond length between adjacent beads is 0.3. The mass of each

bead m is set to 1. In the Langevin dynamics simulations, the time step and the damping

parameter are chosen to be 0.001σ(m/kBT )1/2 and 0.1σ(m/kBT )1/2, respectively. The force

constants for bond and angle harmonic potentials are 100kBT/σ2 and 50kBT/radians2,

respectively. These model parameters of surfactants are taken from our previous study[90].

The simulation box is periodic in the x-y directions, and the polar surface is at z = 0.

The opposite face of the simulation box has an athermal surface with reflective boundary

conditions for all beads. The size of the simulation box is 20 × 20 × 40. The simulation

system has 400 surfactant molecules. The initial configuration is generated by placing the

surfactant molecules randomly in the simulation box. We have confirmed the invariability

of our simulation results in a larger system (800 molecules with simulation box size 20 ×

20 × 80) for some data points.

Our previous work[91] on atomistic simulations of surfactants in bulk and near metal

surfaces has shown that (a) surfactant molecules form micelles with polar groups on the

outside and alkyl tails in the core, implying that the alkyl tails have only weak interactions

with the polar groups and (b) in infinite dilution, the surfactant molecules adsorb with their
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alkyl tail lying parallel to the metal surface, suggesting that the tails have net attractive

interactions with the surface. Thus, in our coarse-grained model, only excluded volume

interactions between the polar heads and the alkyl tails have been considered, while the

interactions between the alkyl tails and the surface are attractive.

3.4 Results and Discussion

3.4.1 Validating the Theoretical Model

Figure 3.1 shows results of equilibrated adsorbed configurations of surfactant

molecules obtained from Langevin dynamics simulations. Each data point in Figure 3.1

is from a Langevin dynamics simulation with a specific set of (εTS , εHS ) parameters. The

theoretical line of EL = ES calculated from equation 3.3 is also shown. In equation 3.3 for

20-mer surfactants, l = 6 and d = 1. PS is calculated as PS = Nπd2

4A , where N is the number

of adsorbed molecules in the SAM. For a surface area of 20 × 20, N ≈ 310, which gives

PS = 0.6.

As per the model, when the εHS is larger in magnitude (that is, more attractive) than

the value corresponding to the EL = ES line for a given εTS , the equilibrium configuration

is expected to be a SAM, while below the EL = ES line, it is expected to be stripes. The

simulation results are found to be in excellent agreement with the theoretical predictions

implying that our theoretical model is quantitatively accurate. Figure 3.2 shows snapshots

of two different state points. Figure 3.2a,b corresponds to (εTS , εHS ) = (0.49, 3.0), and

Figure 3.2c,d corresponds to (εTS , εHS ) = (0.55, 3.0). For (εTS , εHS ) = (0.49, 3.0), a

SAM configuration is obtained, while for (εTS , εHS ) = (0.55, 3.0), a stripe configuration is

obtained. In the stripe configuration, the molecules stack up in multiple layers. The bottom

view of the stripe configuration shows that the molecules are arranged in linear, parallel

stripes. In the SAM configuration, the molecules stand up on the surface and are parallel

to each other. In Figure 3.3, the density distribution of surfactant molecules is plotted as a
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Figure 3.1: Summary of results of Langevin dynamics simulations performed for different

values of (εTS , εHS ). The dashed line shows the condition when EL = ES . An excellent

match between the simulation results and theoretical predictions is obtained.

function of the distance z from the surface for these two equilibrium configurations. Figure

3.3a shows that the SAM configuration is predominantly a monolayer with a shoulder due

to the formation of a partial second layer of adsorbed molecules. Figure 3.3b informs

that, in the stripe configuration, the molecules stack up in nearly eight distinct molecular

layers. Interestingly, the total numbers of adsorbed molecules in the SAM and the stripe

configuration are similar, even when the adsorbed configurations are significantly different.

This result suggests that adsorbed morphology cannot be conclusively deduced from the

adsorbed amount alone[5].
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Figure 3.2: Snapshots of equilibrium configurations: (a) bottom view and (b) side view

for (εTS , εHS ) = (0.49, 3.0) showing SAM and (c) bottom view and (d) side view for

(εTS , εHS ) = (0.55, 3.0) showing stripes.
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Figure 3.3: Equilibrium distribution of surfactant molecules as a function of distance

from the surface z for (a) (εTS , εHS ) = (0.49, 3.0) and (b) (εTS , εHS ) = (0.55, 3.0). The

distribution in panel (a) shows a monolayer of adsorbed molecules standing-up on the

surface with a partially formed second layer appearing as a shoulder. The distribution in

panel (b) shows multilayer adsorption of surfactant molecules lying down on the surface.
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3.4.2 Kinetics of SAM Formation

As discussed above, experiments have revealed two different kinetic pathways leading

to the formation of a SAM: in the first pathway, molecules initially adsorb lying down

on the surface and that is followed by an orientational transition from the stripe to the

SAM configuration. In the second pathway, islands of adsorbed molecules standing up on

the surface form. These islands grow and coalesce to become a SAM. Both these kinetic

pathways are observed in our simulations. The stripe-to-SAM orientational transition is

observed when the EL

ES is close to 1, roughly 0.8 < EL

ES < 1. We illustrate this orientational

transition by describing a simulation trajectory for the case (εTS , εHS ) = (0.49, 3.0) for

which the EL

ES = 0.9 and it eventually forms a SAM (see Figure 3.1).

Movie S15 shows a movie of the simulation trajectory for (εTS ,= εHS = (0.49, 3.0)

in which the stripe-to-SAM orientational transition is clearly seen. For this simulation

trajectory, Figure 3.4a shows the total number of surfactant molecules adsorbed, N as a

function of time. The initial adsorption is rapid followed by a more gradual adsorption.

Figure 4b shows the average angle of the axes of the adsorbed molecules with the surface

normal〈θ〉 as a function of N. During initial adsorption, the molecules lie flat on the surface

as evidenced by 〈θ〉 ≈ 80o. Beyond N ∼ 160, a rapid decrease in the 〈θ〉 is observed,

indicating that the adsorbed molecules undergo an orientational transition and start standing

up on the surface. The arrow in Figure 3.4a indicates the point in the trajectory when the

stripe-to-SAM transition occurs. Figure 3.4c shows the fraction of the surface covered by

the adsorbed molecules, Fraction as a function of time. To calculate Fraction, the surface is

divided into squares of dimensions 0.2 × 0.2 (length-scale is defined by σ, the LJ parameter

of a bead of a surfactant molecule). The centers of all surfactant beads which are within

a distance of z = 1.5 from the surface are projected onto the plane of the surface. If the

center of a square is within a distance of 0.5 from any projected center of a surfactant

5 https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b05861/suppl file/jp9b05861 si 002.mpg

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b05861/suppl_file/jp9b05861_si_002.mpg
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bead, then this square is labelled as “occupied” or else “vacant”. Fraction is defined as

the fraction of occupied squares in a configuration. It is observed that Fraction ¿ 0.8 is

reached in a much quicker time (∼ 1 × 104σ(m/kBT )1/2) than the orientational transition

(∼ 20× 104σ(m/kBT )1/2) indicating that the molecules in the stripe configuration cover the

entire surface before undergoing the transition. Figure 3.4d shows the distribution of θ of

adsorbed molecules at different time periods. Each time period spans 4.3×104σ(m/kBT )1/2.

In the t1 time period,N varies from 145 to 160; in the t2 time period, N varies from ∼182

to 190; in the t3 time period,N varies from ∼220 to 230; in the t4 time period, N varies

from ∼288 to 292. In the t1 period, the distribution of θ is predominantly around 80o

indicating that the adsorbed molecules lie flat on the surface. The period t2 shows initiation

of the orientational transition with the peak around 80o becoming shallower and a bump

appearing near 20o. In the period t3, the peak in the distribution of θ is shifted to 20o

indicating that the molecules now stand up on the surface. In the period t4, the distribution

of θ is sharper and the peak is shifted to 12o, which is the case when the entire surface is

covered with a SAM of adsorbed molecules.
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Figure 3.4: A simulation trajectory with (εTS , εHS ) = (0.49, 3.0). (a) Total number of

adsorbed molecules, N as a function of time. (b) Average angle that the axes of adsorbed

molecules make with the surface normal 〈θ〉 as a function of N. (c) Fraction of the surface

covered with the adsorbed molecules, Fraction as a function of time. (d) Distribution of

angles, θ that adsorbed molecules make with the surface normal for different time periods

(t4 > t3 > t2 > t1, see text).

The second kinetic pathway, in which islands of molecules are formed that coalesce

into a SAM, is observed when EL

ES < 0.6 . Figure 3.5 shows details of such a simulation

trajectory for (εTS , εHS ) = (0.36, 5.0). For this case, EL

ES = 0.53. The 〈θ〉 is found to
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decrease with N indicating that the adsorbed molecules are standing up on the surface

(Figure 3.5b). The Fraction saturates to 0.9 (complete coverage) much more sluggishly

(only after 25 × 104σ(m/kBT )1/2 time steps) showing that there are islands of adsorbed

molecules as well as a bare, exposed surface (Figure 5c). Figure 5d shows distributions of

θ at different times. During the first time period t1 where the N varies from 40 to 140, the

distribution has a peak at 30o, indicating that the molecules are already standing up on the

surface. The peak at these small values of θ becomes sharper as more adsorption occurs.

Basically, whenEL � ES , the molecules have a strong tendency to stand up in the adsorbed

state, which leads to the formation of islands and a stripe configuration does not form.
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Figure 3.5: Results of a simulation trajectory with (εTS , εHS ) = (0.36, 5.0). In this

trajectory, a SAM configuration is achieved via formation of islands of standing-up

adsorbed molecules. (a) N as a function of time. (b) 〈θ〉 as a function of N. (c) Fraction as

a function of time. (d) Distribution of θ for different time periods (t4 > t3 > t2 > t1). Each

time period spans 4.3 × 104σ(m/kBT )1/2 time. t1 corresponds to the period when N varies

from 40 to 140, t2 corresponds to N from 205 to 235, t3 corresponds to N from 280 to 290,

and t4 corresponds to N from 319 to 322.

Figure 3.6 shows a simulation trajectory for (εTS , εHS ) = (0.49, 2.0) for which the

stripe configuration is achieved. Figure 3.7 shows a simulation trajectory for (εTS , εHS ) =

(0.4, 2.5), which is another example of a stripe-to-SAM transition.
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Figure 3.6: Results of a simulation trajectory with (εTS , εHS ) = (0.49, 2.0). In this

trajectory, a stripe configuration is eventually formed. (a) Total number of adsorbed

molecules, N as a function of time. (b) Average angle that the axes of adsorbed molecules

make with the surface normal, 〈θ〉 as a function of N. 〈θ〉 increases with N indicating

formation of the stripe configuration. (c) Fraction of the surface covered with the adsorbed

molecules, Fraction as a function of time. The maximum surface coverage is very

quickly attained. (d) The distribution of angles, θ that adsorbed molecules make with the

surface normal for different time periods (t4 > t3 > t2 > t1). Each time period spans

4.3× 104σ(m/kBT )1/2 time. t1 corresponds to the period when N varies from 120 to 155, t2

corresponds to N from 175 to 185, t3 and t4 correspond to N fluctuating around 205. The

distribution is always peaked near 80o showing that the adsorbed molecules remain lying-

down on the surface.
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Figure 3.7: Results of a simulation trajectory with (εTS , εHS ) = (0.4, 2.5). In this trajectory,

a stripes-to-SAM orientation transition is observed. (a) N as a function of time. (b) 〈θ〉 as

a function of N. 〈θ〉 starts to decrease after N ∼ 140, indicating the initiation of stripe-

to-SAM transition. (c) Fraction as a function of time. Maximum surface coverage is

attained before the stripe-to-SAM transition occurs. (d) The distribution of θ for different

time periods (t4 > t3 > t2 > t1). Each time period spans 4.3 × 104σ(m/kBT )1/2 time. t1

corresponds to the period when N varies from 122 to 132, t2 corresponds to N from 130 to

150, t3 corresponds to N from 180 to 205, and t4 corresponds to N from 205 to 220. The

shift in the peak of the distribution from 80o to 20o is observed, which is a signature of the

stripe-to-SAM transition.
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3.4.3 Validating the Theoretical Model for 30-Mer Surfactants

We have tested our theoretical model on 30 bead long linear surfactant molecules by

performing Langevin dynamics simulations for two state points (εTS , εHS ) = (0.4, 4.0) and

(εTS , εHS ) = (0.5, 4.0). For this system, σ = 1, d = 1, and l = 9. Following the above

strategy, we set εTT = 0.046, which has been shown to result in maximal adsorption when

the tail-surface interactions are zero.[90] Figure 3.8 shows the kinetics of adsorption for

(εTS , εHS ) = (0.4, 4.0) wherein a SAM is formed. The adsorption is observed to be sluggish

as compared to the 20-mer case (Figure 3.8a). The maximum adsorbed amount is N ∼ 200,

which corresponds to PS = 0.4. From equation 3.3, EL

ES = 0.87 for (εTS , εHS ) = (0.4, 4.0)

suggesting that the preference is to form a SAM. For (εTS , εHS ) = (0.5, 4.0), equation 3.3

gives EL

ES = 1.03 , indicating that a stripe configuration should form, which is indeed the

case (Figure 3.9). The N as a function of time is plotted in Figure 3.8a. The arrow indicates

when the stripe-to-SAM orientational transition is observed. The stripe-to-SAM transition

corresponds to a decrease in the 〈θ〉 (Figure 3.8b). Figure 3.8c shows that the Fraction

becomes greater than 0.8 within 1 × 104σ(m/kBT )1/2 time, which is much earlier than the

stripe-to-SAM transition time indicating that the stripe configuration occupies the entire

adsorbing surface. The distribution of θ at different times during the adsorption is displayed

in Figure 3.8d. The behavior of the distribution is similar to that in Figure 3.4d. At time

t1 (corresponding to N ∼ 110 − 122), the distribution is peaked at ∼ 80o, which implies

the presence of the stripe configuration. At t2 (N ∼ 132 − 146), there are peaks at ∼ 30o

and ∼ 80o suggesting that the configuration is in the midst of the stripe-to-SAM transition.

At times t3 (N ∼ 166 − 176) and t4 (N ∼ 200), the peak in the distribution is closer to

∼ 30o since a SAM configuration has formed. These results confirm the applicability of

our theoretical model to surfactants of different alkyl tail lengths.
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Figure 3.8: A simulation trajectory of 30-mer surfactant molecules with (εTS , εHS ) =

(0.4, 4.0). (a) N as a function of time. (b) 〈θ〉 as a function of N. (c) Fraction as a function

of time. (d) Distribution of θ for different time periods t4 > t3 > t2 > t1, see text).
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Figure 3.9: A simulation trajectory for 30-mer surfactant molecules with (εTS , εHS ) =

(0.5, 4.0) is shown. A stripe configuration is eventually formed. (a) N as a function of

time. (b) 〈θ〉 as a function of N. 〈θ〉 increases with N indicating formation of the stripe

configuration. (c) Fraction as a function of time. Maximum surface coverage is quickly

attained. (d) The distribution of θ for different time periods (t4 > t3 > t2 > t1). Each

time period spans 4.3 × 104σ(m/kBT )1/2 time. The distribution is always peaked near 80o

showing that the adsorbed molecules remain lying-down on the surface.
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3.4.4 Conditions for Validity of our Theoretical Model

Conditions for Validity of our Theoretical Model. We have provided a theoretical

framework to predict equilibrium adsorbed configurations of linear surfactant molecules

on polar surfaces. Our theory only considers energetic terms but ignores entropic changes

during adsorption. Therefore, we would expect this theory to be valid for cases where

significant adsorption, resulting in complete surface coverage, is observed. In cases of

partial adsorption, a balance of the entropic and energetic terms between the bulk and

adsorbed states is expected to exist, and our theory will fail to explain these scenarios.

Furthermore, even though tail-tail interactions do not enter in our equations, our theory is

expected to be applicable for cases where these interactions are significant so that stable

SAM and stripe configurations are formed. While these conditions are the limits on the

applicability of our theory, it still encompasses a large number of systems of interest, such

as surfactants adsorbing on metal and polar surfaces in aqueous media.

In this work, the theoretical model is validated by performing implicit solvent

Langevin dynamics simulations of a coarse-grained model of surfactant molecules. This

system was selected because of its computational efficiency, which allowed us to sample

numerous data points that were needed for proper validation of the model. Even with this

coarse-grained description, the self-assembly of surfactants in organized layers was found

to be a slow process, as can be seen from the kinetic results. Explicit treatment of water

will have an effect on the adsorption behavior. Water adsorbs in layers on metal and polar

surfaces and solvates polar heads of the surfactants[91]. As a result, along with direct

interactions between the surfactants and the surface, there will be indirect, water-mediated

interactions as well. For applying our theoretical model to a fully atomistic simulation, we

will need to include these interactions by calculating the potential of mean force between

different species. Furthermore, the presence of water may present free energy barriers

to adsorption[91], which may affect the diffusion of surfactants toward the surface. The
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application of our theoretical model on a fully atomistic system will be a subject of future

research.

3.5 Conclusions

A theoretical model for predicting adsorbed configurations of linear surfactant

molecules on polar surfaces have been developed. The predictions of the model have

been validated by performing Langevin dynamics simulations. The model also shows that

the ratio of energies associated with the lying down and standing-up configurations, EL

ES is

a good indicator for predicting the kinetic pathway associated with SAM formation. In

future work, this model will be extended for different surfactant geometries and anisotropic

interactions.
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4 A Quantitatively Accurate Theory to Predict Adsorbed

Configurations of Asymmetric SurfactantMolecules on

Polar Surfaces6

4.1 Introduction

Adsorption of surfactants on metal surfaces is useful in many applications, including

inhibition of corrosion in oil and gas pipelines [92], modulating electrochemical reactions

[3], tuning selectivity of chemical reactions [4] and synthesis of anisotropic metal

nanoparticles of desired shapes and sizes [2]. The adsorption mechanism can be thought

of as comprising of two processes: the diffusion of surfactants towards the surface, and

the organization of adsorbed molecules. Surfactants aggregate as micelles above the

critical micelle concentration (CMC), and experiments report a change in the adsorption

kinetics above and below the CMC [93]. These results are rationalized via atomistic

simulations that have shown that surfactant micelles have a free energy barrier to adsorption

on metal surfaces, which is absent in the case of unaggregated molecules [76, 91, 94].

Upon adsorption, surfactant molecules are understood to organize themselves in various

structures or morphologies, including planar films [20, 88], (hemi-) cylinders and (hemi-)

spheres [56, 61, 62]. These morphologies are expected to affect the interfacial properties

differently [14]. Therefore, understanding the factors that result in the formation of different

adsorption morphologies will be useful for the purpose of rational design of surfactants

for specific applications. A pioneering work focused on predicting the morphologies of

adsorbed surfactants via macroscopic thermodynamic theory has been done by Nagarajan

and coworkers [81, 82]. However, an encompassing theoretical framework that is able to

6 Adapted with permission from Ko, X., & Sharma, S. (2020). A Quantitatively Accurate Theory to
Predict Adsorbed Configurations of Asymmetric Surfactant Molecules on Polar Surfaces. Journal of Physical
Chemistry B, 124(26), 5517-5524. Copyright(2020) American Chemical Society.



75

predict adsorbed morphologies of surfactants on polar surfaces directly from molecular

properties and surfactant-surface interactions has not been established.

Experiments have shown that the organization of adsorbed surfactants on polar

surfaces can occur via different kinetic pathways. The first kind of pathway, as reported

for the adsorption of alkanethiols on gold [88, 89], comprises of two steps. In the first step,

the molecules adsorb by lying flat with their axis parallel to the surface to form a stripes-

like configuration. This is followed by an orientational transition wherein the molecules

stand up on the surface, allowing for more molecules to adsorb [88, 89]. The second kind

of pathway, for instance reported for the adsorption of octadecylphosphonic acid [86, 87]

and octadecyltrimethyl ammonium bromide (C18TAB)[84] on mica, involves nucleation of

densely packed molecular islands on the surface. As the adsorption proceeds, these islands

grow and coalesce to form a contiguous layer on the surface.

In our previous work, we developed a theoretical model for predicting adsorbed

configurations of linear surfactant molecules on polar surfaces [95]. We demonstrated,

via molecular simulations, that our theoretical model is quantitatively accurate in its

predictions. However, an outstanding question remained if our model can be extended

to asymmetrical surfactant molecules that form more complex, non-planar adsorption

morphologies. In this work, we extend our theoretical model to asymmetric surfactant

molecules that have a linear alkyl tail but the size of their polar head is larger than

that of the alkyl groups. We have shown previously that such asymmetric surfactant

molecules aggregate and adsorb in cylindrical and spherical morphologies on polar surfaces

[95]. The basic principle behind our theoretical model is that upon adsorption, the most

energetically favorable morphology is attained, which depends on the relative strength

of interactions between the polar head and the alkyl tail with the surface. If the alkyl

tails have appreciable affinity for the surface, then the molecules adsorb by “lying-down”

on the surface. However, such a configuration occupies a larger surface area. Whereas,
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a “standing-up” configuration with only the polar group in contact with the surface will

allow more molecules to adsorb on the surface. Thus, by comparing the overall energetics

associated with the two configurations that cover the entire adsorbing surface, one can

predict the favorable adsorbed configuration in different cases [95]. In the case of

asymmetric surfactant molecules, the standing-up configuration results in morphologies

with signatures of full cylinders and the lying-down configuration shows signatures of

partial spheres. In this chapter, we first describe our theoretical model and then discuss

results of the simulations performed to check the validity of the model.

4.2 Theoretical Model

Consider a surfactant molecule with a polar head of size σ P and comprising of n

alkyl groups in the tail, with each alkyl group of size σ . Let εS
HS and εS

TS denote the

interaction strengths of the polar head group (H) and an alkyl tail group (T) with the surface

respectively in the standing-up (S) configuration. εL
HS and εL

TS are analogously defined for

the lying-down (L) configuration. Let l be the length of the alkyl tail. For a configuration

of molecules standing-up on the surface, the energy is given by,

ES = εS
HS PS A

AS
m

(4.1)

Where, PS is the packing fraction of the molecules adsorbed on the surface, A is the

total area of the surface and AS
m is the area occupied by a molecule in the standing-up

configuration. PS is given by,

PS = NS AS
m

A
(4.2)

Where, NS is the number of molecules adsorbed in the standing-up configuration. The

energy associated with the lying-down configuration is given by,
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EL =
(
εL

HS + nεL
TS

)
PL A

AL
m

(4.3)

Where, PL is the packing fraction of the adsorbed molecules and AL
m is the area

occupied by a molecule in the lying-down configuration. PL is given by,

PL =
NLAL

m

A
(4.4)

Where, NL is the number of molecules in the lying-down configuration in the first

adsorbed layer on the surface. Area occupied per molecule in the two configurations can

be calculated from the geometry of the molecule,

As
m = π

(σp

2

)2
(4.5)

AL
m = lσ + π

(σp

2

)2
(4.6)

If the interactions of the polar head and the alkyl tail groups with the surface are

independent of the adsorbed configuration, then the subscripts L and S can be dropped from

the interaction energy terms. In that case, the ratio of energies in the two configurations is

given by,

EL

ES =
(εHS + nεTS ) PLAS

m

εHS PS AL
m

(4.7)

Thus, the equilibrium adsorbed configuration depends on the strength of interactions

of the polar head and the alkyl tail with the surface, as well as the molecular geometry.

The model predicts that when EL > ES , the lying-down configuration is preferred over

the standing-up configuration and vice versa. This theoretical model is valid under the

conditions that the adsorption is strongly favored. So, one would expect the surface to be

maximally covered and PL ≈ PS . With the assumption that PL ≈ PS , equation .4.7 can be
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applied without determining the equilibrium number of adsorbed molecules per unit area,

and thus precludes the need to fit any data to the model to make predictions. It should be

noted that since our theoretical model is only based on molecular geometry, it does not

require quantities needed to describe geometrical shapes of the adsorbed morphologies,

unlike in previous works[81, 82]. So, while our theoretical model does not attempt to

predict the overall adsorbed morphologies directly, it explains the configurations that are

attained by individual adsorbing molecules, which in turn manifest different adsorbed

morphologies.

4.3 Simulation System and Methods

To test the validity of our theoretical model, we have performed Langevin dynamics

simulations of adsorption of asymmetric surfactant molecules on polar surfaces. Surfactant

molecules are represented by a coarse-grained bead-spring model employed previously

[90, 95], wherein the first bead represents the polar head group and the remaining beads

represent the alkyl tail. The size of the polar head bead is taken as twice that of an alkyl

bead, that is σP= 2σ . The alkyl tail is represented by n= 19 alkyl beads connected to each

other via harmonic bond and angle potentials with the equilibrium bond length of 0.3σ

and the equilibrium angle of 1800. The polar head bead is connected to the alkyl tail with

a harmonic bond potential of equilibrium length of 1.5σ . The interactions between the

surface and the beads are modeled via a 9-3 potential, which is essentially an integrated

Lennard-Jones (LJ) potential over a semi-infinite slab of LJ particles, which allows us to

treat the surface as a smooth plane. The well-depth of the 9-3 potentials for the head

bead and the alkyl tail beads are εHS and εTS respectively. Simulations are performed

for different values of εHS and εTS in order to obtain the equilibrium morphologies and

compare them against the predictions of our theoretical model. Interactions between any

two alkyl beads are modeled via a LJ potential with the potential well-depth of εTT .
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Interactions between a polar bead and an alkyl bead are modeled via a purely repulsive

Week-Chandler-Andersen potential. Solvent is treated implicitly in the simulations. The

effect of solvent is incorporated by performing Langevin dynamics simulations. All

quantities are reported in reduced units. Thermal energy, kBT is taken as the unit of energy,

σ is taken as the unit of length and the mass of an alkyl bead, m is taken as the unit of

mass. To test the theoretical prediction, the εHS is varied from 3 to 5 kBT. This range of

values match the typical binding energies that have been calculated for polar groups on

metal surfaces [69]. The εTS is varied from 0 to 0.65 kBT. As in our previous work [95], the

potential well-depth of the interaction between two alkyl beads is set to εTT = 0.065 kBT.

For this value of εTT , the overall hydrophobic interaction between two alkyl tails is of the

order of a kBT [96]. The time step and the damping parameter for the Langevin dynamics

simulations is 0.001 σ
(

m
kBT

)1/2
and 0.1 σ

(
m

kBT

)1/2
. The force constants associated with

the bond and angle harmonic potentials are 100 kBT/σ2 and 50 kBT/radians2 respectively.

The size of the simulation box is 26.93σ × 26.94σ × 40.0σ. These dimensions are chosen

to ensure that the volume density of the surfactants in our system is equal to that in our

previous work on symmetrical, linear surfactant molecules [95]. The total number of

molecules in the simulation box is 400.

To apply the theoretical model [equation 4.7], one needs to determine the values of

PL and PS from the simulations, which depend on the values of NL and NS respectively.

The values of NL and NS are determined by counting the number of molecules in the first

adsorbed layer of the two configurations when the surface is maximally covered by the

molecules. In our simulations (discussed later), we find that PL ≈ PS , and so equation 4.7

does not require any fitting parameters to be calculated from the simulations. The condition

of PL ≈ PS is not surprising because our theoretical model is valid under the assumption

that the adsorption of molecules is strongly favored and as a result the surfaces is expected

to be maximally covered [95].
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4.4 Results and Discussion

4.4.1 Validating the Theoretical Model

In the first layer, the surfactant molecules may adsorb either in the lying-down or

in the standing-up configuration depending on the strength of their interactions with the

surface. Figure 4.1 shows results of the simulations performed by choosing different

values of εHS and εTS . Every data-point in the figure corresponds to the equilibrium

adsorbed configuration of the surfactant molecules for a given ( εTS , εHS ). The figure

also shows prediction of the theoretical model [equation 4.7] for which EL = ES , that

is, when the energy associated with the lying-down and the standing-up configuration is

equal. For a given value of εTS , if the εHS is above the theoretical line, then the standing-

up configuration is expected to be preferred over the lying-down configuration. Figure

4.1 shows that this is indeed the result that is obtained in our simulations, implying that

our theoretical model is quantitatively accurate in predicting the adsorbed configurations

of asymmetrical surfactant molecules on polar surfaces. Interestingly, for some data-points

close to the theoretical line in Figure 4.1, the standing-up and the lying-down configurations

co-exist. These data-points are labeled as “Mixed” in Figure 4.1.
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Figure 4.1: Results of equilibrium adsorbed configurations obtained in Langevin dynamics

simulations performed for different values of( εTS , εHS ). The theoretically predicted

condition of EL = ES is also shown. The results from the simulations are found to be

in quantitative agreement with the theory.

The standing-up and the lying-down configurations are identified from the signifi-

cantly different orientational distributions of the adsorbed molecules. This is illustrated in

Figure 4.2(a), which shows the distribution of angles in these two configurations. The angle

θ , is defined as the angle that the vector joining the terminal alkyl bead to the polar head

bead forms with the plane of the surface. The distribution of θ shown in Figure 4.2(a) has

been normalized by cos θ . In the lying-down configuration, the distribution has a peak θ ≈

7◦ , which is as per our expectation because the surfactant molecule is 7.2σ long and the

polar head is 1σ larger than the alkyl bead. On the other hand, in the standing-up configu-

ration, the distribution is broad at ± 90◦ . For the standing-up configuration, the distribution

does not go to zero for any θ , implying that the adsorption morphology is like a (squished)
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cylinder/sphere. Figure 4.2(b) shows distribution of the center-of-mass of the molecules in

the two adsorbed configurations shown in Figure 4.2(a). The two configurations have dif-

ferent center-of-mass distributions as expected. The lying-down configuration has a sharp

peak at 1σ from the surface, whereas the standing-up configuration has a peak at 5.4σ

from the surface. The θ - and the center-of-mass distributions of different (εTS , εHS ) close

to the theoretical line are shown in the Figure 4.3, 4.4, 4.5. A snapshot of the adsorbed

morphologies that result from the standing-up and the lying-down configurations is shown

in Figure 4.6.

Figure 4.2: (a) Distribution of the angle that the adsorbed molecules make with the surface

for (εTS , εHS ) = (0.23, 5) (red color) and (εTS , εHS ) = (0.55, 5) (blue color). For (εTS ,

εHS )= (0.23, 5), the molecules attain a standing-up configuration, whereas for (εTS , εHS )

= (0.55, 5), the molecules attain a lying-down configuration. (b) Distribution of center-of-

mass of the molecules from the surface for (εTS , εHS )= (0.23, 5) (red color) and (εTS , εHS )

= (0.55, 5) (blue color). The lying-down configuration shows a sharp peak at 1σ, while the

standing-up configuration shows a peak at 5.4σ.
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Figure 4.3: (a) Distribution of the angle that the adsorbed molecules make with the surface

for (εTS , εHS )= (0.36, 3). (b) Distribution of center-of-mass of the molecules from the

surface for the same simulation point. This state-point shows formation of a lying-down

configuration.

To visualize the adsorption morphologies, we have generated “instantaneous interfaces”

snapshots of the adsorbed molecules [97] (Figure 4.7). In instantaneous interfaces, a con-

tinuous mass-density field is generated by applying a Gaussian distribution centered at the

location of each particle in the system. At each point in space, contribution from these

Gaussian distributions are added to determine the overall density field. Figure 4.7(a) and

(b) show top-view snapshots obtained from instantaneous interfaces for the standing-up

[εTS , εHS = (0.23, 5)] and the lying-down configurations [εTS , εHS = (0.55, 5)] respec-

tively. Details of the parameters employed for generating these interfaces are discussed

in the figure caption. In the standing-up configuration, the instantaneous interfaces show

the morphology to be close to cylindrical, whereas in the lying-down configuration, the

morphology more closely resembles spheres.
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Figure 4.4: (a) Distribution of the angle that the adsorbed molecules make with the surface

for (εTS , εHS )= (0.32, 4). (b) Distribution of center-of-mass of the molecules from the

surface for the same simulation point. This state-point shows formation of a standing-up

configuration.
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Figure 4.5: (a) Distribution of the angle that the adsorbed molecules make with the surface

for (εTS , εHS )= (0.42, 5). (b) Distribution of center-of-mass of the molecules from the

surface for the same simulation point. This state-point shows formation of a mixed

configuration.
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Figure 4.6: A snapshot of the equilibrated simulation system for (a) εTS , εHS = (0.23, 5)

and (b) εTS , εHS = (0.55, 5) showing the standing-up and the lying-down configurations

respectively. The region close to the surface has been shaded to highlight the adsorption

region.
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Figure 4.7: Top view of the adsorbing surface for (a) εTS , εHS = (0.23, 5) and (b) εTS ,

εHS = (0.55, 5). To visualize the morphology, instantaneous interfaces (blue surfaces) are

generated by coarse-graining the density field by placing a normalized Gaussian function,

φ(r; ζ) = (2πζ2)−3/2e−r2/2ζ2
centered at the location r of each bead. The density field at any

location is the summation of the contribution from the different Gaussian distributions. For

our calculations, we choose ζ = 1.5σ. The interface is formed by setting the lower and the

upper cutoff values of the density field as 0.5σ−3 and 0.7σ−3 respectively.
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The kind of configuration that the surfactants attain upon adsorption affects the total

number of adsorbed molecules< N >. Figure 4.8 shows the < N > for different values of

εHS and εTS . In the standing-up configuration (shown by filled symbols), the number of

molecules does not vary significantly with εTS for a given value of εHS . A sharp drop in

< N > is observed as the configurations transition from the standing-up to the lying-down

state (shown by open symbols). Mixed configurations (shown by the cross symbol), in

which the lying-down and the standing-up configurations coexist, have intermediate values

of the < N >. The < N > is smaller for the lying-down configurations, because the

molecules occupy more surface area and so fewer molecules adsorb. It is an important

result in the sense that as the εTS increases for a given εHS , the total affinity of a surfactant

molecule for the surface increases. However, our analysis shows that this increase in the

affinity may result in a decrease in the < N > if the adsorbed configuration of the molecules

changes.

4.4.2 Kinetic Pathways of Formation of Adsorption Morphologies

Previous experiments have suggested that the organization of adsorbed surfactants in

different morphologies may follow two different kinetic pathways. In the first pathway, the

molecules initially adsorb lying down on the surface and then as more adsorption occurs,

they undergo an orientational transition to stand up on the surface. In the second pathway,

the molecules adsorb in the standing-up configuration to form islands. These islands grow

and eventually coalesce to form the adsorption layer. Both these kinetic pathways are

observed in our simulations, and the preferred pathway depends on the relative magnitudes

of εTS and εHS . Figure 4.9(a) shows distribution of the angle, θ at different times during

the adsorption process for the case when (εTS ,εHS )= (0.39, 5). For this set of interactions,

the molecules are expected to attain the standing-up configuration as per the Figure 4.1.

The first time-period, t1 shows the θ -distribution to be sharply peaked at 7◦ , which is a
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Figure 4.8: Equilibrium number of adsorbed molecules, < N > as a function of εTS for

different values of εHS . The standing-up configurations are shown by filled symbols, and

the lying down configurations are shown by open symbols. The mixed configurations are

shown by the +symbol. Error bars are the standard deviation calculated from four different

simulations.
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signature of the lying-down configuration. There is a fraction of the molecules is standing-

up on the surface, as the distribution is non-zero at θ = ± 80◦ . Figure 4.9(b) shows the

distribution of the center-of-mass of the molecules from the surface. For the time-period

t1, the distribution in Fig. 6(b) has peaks at 1σ and 5.4σ from the surface, indicating that

some molecules are lying-down, while some are standing-up on the surface. The time-

period t1 is from time 0 to 8.5 × 104 σ
(

m
kBT

)1/2
wherein the number of adsorbed molecules,

N increases from 0 to 150. The surface coverage from adsorbed molecules is close to 90%

by the end of the t1 (4.10). In the second time-period, t2 (from 8.5 – 17 × 104 σ
(

m
kBT

)1/2

), it is observed that the peaks corresponding to the lying-down configuration reduce in

the Fig. 6(a) and (b), implying that more molecules now stand up on the surface. The N

increases from 150 to 170 in this period. The period t3 is from 25.5 – 34 × 104 σ
(

m
kBT

)1/2
.

It is observed that the signatures of the lying-down configuration are now absent, implying

that all the adsorbed molecules are standing-up on the surface. Thus, for this value of (εTS ,

εHS ) , the kinetic pathway involves an initial adsorption of the surfactant molecules in the

lying-down configuration, which is followed by a gradual orientational transition to the

standing-up configuration. This kind of kinetic pathway is observed for the state-points

that are close to the theoretical line of EL = ES . For such state-points, the lying-down

configuration is energetically comparable to the standing-up configuration.

To observe the second kind of kinetic pathway, one can analyze the adsorption kinetics

of a data-point for the standing-up configuration that is away from the theoretical line of EL

= ES . Figure 4.11 shows distribution of the angle θ at different times during the adsorption

process for the case when (εTS , εHS )=(0.23, 5). In this case, the θ -distribution at all time-

periods (t1 < t2 < t3) and t3 match with that of a standing-up configuration. Thus, in this

case, the kinetic pathway involves formation of islands of standing-up molecules. These

islands grow and coalesce as the adsorption increases with time.
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Figure 4.9: Kinetics of adsorption of the surfactants for (εTS , εHS )=(0.39, 5). (a) shows

the distribution of the angle that the molecules form with the surface, θ at different time

periods (t1 < t2 < t3). (b) shows the distribution of the distance of the center-of-mass of the

molecules from the surface for the same time periods. These graphs show that the kinetics

of adsorption involve a standing up to a lying down orientational transition.
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Figure 4.10: Fraction of the surface covered by surfactant molecules as a function of the

number of adsorbed molecules, N for (εTS , εHS ) = (0.23, 5). The molecules adsorb in the

standing-up configuration.
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Figure 4.11: Kinetics of adsorption of the surfactants for (εTS , εHS )=(0.23, 5). The figure

shows the distribution of the angle that that the molecules form with the surface, θ at

different time periods (t1 < t2 < t3). At all times, the distribution of the θ represents

the standing-up configuration.
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Figure 4.12: Formation of islands of adsorbed molecules during the adsorption process in

the case of (εTS , εHS )= (0.23, 5). (a) Number of islands as a function of the number of

adsorbed molecules, N, and (b) fraction of the surface area covered by the largest island as

a function of N. Linear, best fit lines are shown as a guide to the eye.
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To identify the islands on the surface, the following procedure is employed: the surface

is divided into cubes of side 0.2σ. All alkyl beads within 1.5σ and all polar beads within

3σ from the surface are projected onto the plane of the surface. The cubes that are within

0.8σ/ 0.8σP from the alkyl / polar beads are labeled as occupied. The adjacent occupied

cubes are considered part of an island. Figure 4.12 illustrates the formation and growth of

islands of adsorbed molecules for (εTS , εHS ) = (0.23, 5). Figure 4.12(a) shows the number

of islands as a function of N. A large number of islands form on the surface initially. As

N increases, these islands grow and coalesce into one-another. The large fluctuation in the

number of islands for a given value of N indicates that many islands break and form during

the course of adsorption. This is further evidenced in Figure 4.13 wherein the number of

islands is plotted as a function of total surface coverage. It is observed that for a given

surface coverage, there is fluctuation in the number of islands. For the same trajectory as

shown in 4.12(a), 4.12(b) tracks the size of the largest island as a function of N. The size is

shown in terms of the fraction of the total surface area covered by the largest island. It is

observed that the largest island grows as N increases.

4.5 Conclusions

In this work, we have developed a theoretical model to predict adsorbed configurations

of surfactant molecules on polar surfaces. Asymmetric surfactant molecules that have a

linear alkyl tail and a large polar head group is the main focus. The theoretical model

is based on the principle that if the interactions of the polar head with the surface is much

stronger than that of the alkyl tail with the surface, then the molecules attain a configuration

in which they adsorb by standing-up on the surface. This adsorbed configuration allows

more molecules to adsorb in comparison to the lying-down configuration and thus lowers

the overall energy of the system. On the other hand, if the interactions of the alkyl tail

with the surface are strong, the molecules adsorb in the lying-down configuration. Due to
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Figure 4.13: Number of islands of adsorbed molecules as a function of the fraction of the

surface covered by surfactant molecules for (εTS , εHS ) = (0.23, 5). Fluctuations in the

number of islands for a given coverage indicates that the islands coalesce and break apart

on the surface.
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the asymmetrical geometry of the surfactant molecules, the molecules attain a cylindrical

morphology in the standing-up configuration and a spherical morphology in the lying-down

configuration. Our simulations show that the theoretical model is quantitatively accurate in

predicting adsorbed configurations of surfactant molecules.
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5 Experiments andMolecular Simulation Study of How

Co-adsorption of OilMolecules in Adsorbed Corrosion

Inhibitors Improves CorrosionMitigation7

5.1 Introduction

Oil and gas transportation pipelines, made of mild steel, are prone to internal corrosion

upon exposure to water, which is invariably present in oil and gas streams [98]. An efficient

and cost-effective method of mitigating internal corrosion of these pipelines is to inject

organic corrosion inhibitors in the fluid stream continuously at concentration levels of

parts-per-million [5, 47]. Amphiphilic surfactant molecules have been found to be effective

corrosion inhibitors [5, 16, 47]. Imidazole, quaternary ammonium, amide and amidoamine

based surfactants are popular corrosion inhibitors due to their low toxicity and high efficacy

[1, 16, 17].These molecules consist of a hydrophobic tail (non-polar) and a hydrophilic

head (polar) group. The hydrophobic tails are hydrocarbon chains comprised of usually

6 to 22 carbon atoms, while the hydrophilic heads are either non-ionic or ionic functional

groups. The protective properties of these molecules are closely related to their adsorption

at the metal-water interface [99].

Adsorption behavior as well as efficiency of corrosion inhibitors have been researched

extensively in experimental and simulation studies [14, 91, 94, 100–102]. Most of these

studies have focused on evaluating corrosion inhibition mechanism in aqueous phase

devoid of any oil. A few researchers have studied the effect of oil wetting, and have

reported that the presence of an oil phase improves corrosion inhibition efficiency of

inhibitor molecules [103]. McMahon showed that the adsorption of oleic imidazoline

7 This chapter has been published and is formatted to the requirements of Corrosion Journal. Ko, X.,
Olivo, J. D., Brown, B., Nešić, S., & Sharma, S. (2020). Experiments and Molecular Simulations to Study
the Role of Coadsorption of Oil in Corrosion Inhibitor Films in Improving Corrosion Mitigation. Corrosion,
76(11). © NACE [2020], used with permission.
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inhibitors onto oil-wet steel surfaces was fast and does not depend on the type of oil used

to wet the surface. Amonolayer of oleic imidazoline was found to adsorb on the oil-wet

steel surface [5].Improvement in corrosion inhibition due to oil has been reported in other

studies [104]. Foss et al. studied the effect of corrosion inhibitors on the wettability

of carbon steel [105], iron carbonate (FeCO3) covered steel surfaces [106], and ferric

oxide covered steel surfaces [107], and found that both oleic imidazoline and phosphate

ester altered the wettability of a bare steel surface from hydrophilic to hydrophobic, and

the performance of oleic imidazoline and phosphate ester significantly increased after oil

wetting of the bare steel surface and iron carbonate covered steel surface. By observing

the water droplet contact angle as a function of inhibitor concentration, Li et al. [103]

concluded that fatty amine-type inhibitor was more effective in altering the wettability from

water-wet to oil-wet compared to quaternary ammonium chloride inhibitors, and direct

exposure of the surface to oil enhanced the performance of the fatty amine-type inhibitor.

Researchers have attributed this improved performance to co-adsorption of inhibitor and

oil molecules at the metal-water interface. These experimental works provide evidence that

the presence of oil has an effect on the adsorption and performance of corrosion inhibitors.

So far, these experimental observations have only been explained by hypothesizing how

oil molecules might be interacting with corrosion inhibitor molecules. There has been no

direct investigation of the molecular-level interactions between oil and corrosion inhibitor

molecules.

In this study, we have performed molecular simulations to understand how the pres-

ence of oil molecules affects the adsorption behavior of corrosion inhibitor molecules.We

report that oil molecules get co-adsorbed in the corrosion inhibitor film due to lateral hy-

drophobic interactions between the oil molecules and the tails of inhibitor molecules. We

find that the co-adsorbed oil molecules are able to change the morphology of adsorbed cor-

rosion inhibitor films and can significantly enhance the structural ordering and hydropho-



100

bic character of the adsorbed films. This is the first ever study that has directly revealed

molecular-level behavior of how oil molecules affect corrosion inhibitor films.

5.2 Scope of Work

Basic Ideas of Molecular Simulations:

It is understood that any equilibrium thermodynamic state is essentially an ensemble

of a large number of molecular configurations or microstates because molecules are

in constant motion. To get a quantitative perspective, consider that the average speed

of molecules, calculated via Maxwell-Boltzmann distribution, is ∼500 m/s at room

temperature. At liquid state densities, the mean free path between the molecules is ∼

0.5 nm, so one would expect close to 1012 molecular collisions occurring per second per

molecule. Consequently, thermodynamic properties are statistical properties of a large

number of microstates. The relationship between molecular and thermodynamic properties

is well established in the theory of statistical mechanics. In molecular simulations,

microstates associated with a thermodynamic state are generated by simulating the motion

of molecules, often by utilizing computational power of many processors operating in a

parallel fashion in a computer cluster.

To simulate molecular motion, one needs to know the nature of atomic forces. Every

atom in a system exerts a distance-dependent force on every other atom. These forces are

electrostatic in nature and arise due to the interactions of electron clouds and nuclei. While

calculation of electronic motion requires solving the equations of quantum mechanics, the

motion of nuclei of atoms heavier than hydrogen can be well understood via classical

Newtonian mechanics. The forces depend on the type of the atoms. For example, non-polar

alkane molecules will predominantly interact via van der Waals forces. Polar and charged

molecules will also have coulombic interactions. Distance-dependent forces between

different atoms are represented via mathematical functions called force fields.
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Therefore, to perform molecular simulations, one needs to generate an initial

molecular configuration of the system, define the force field and define the thermodynamic

state of the system, such as a constant number of molecules N, volume V, and temperature

T. Starting from the initial molecular configuration, forces between all atoms is calculated.

Numerical integration of classical equations of motion is then performed to generate

molecular trajectories. The forces are calculated after every femto-second (10-15 s),

because the forces depend on the distance between the atoms and therefore are continuously

changing.

5.2.1 Simulation Setup:

Often, a useful approach to study molecular behavior is to employ a coarse-grained

(CG) description of the molecules that comprise a system. In a CG description, instead

of explicitly representing every atom in the simulation, a group of atoms are combined

into a united atom or a CG bead, as shown schematically in Figure 5.1 [76]. As an

example, an alkyl group can be represented by only one bead. This approach helps in

significantly reducing the number of particles in the simulation system and thus makes

the simulation computationally fast. In systems where a large number of molecules are

needed, for example, in self-assembly or phase transitions, CG descriptions are useful to

enable longer simulations.

Figure 5.1: A schematic of the coarse-grained model of a corrosion inhibitor.The cyan

colored beads represent the alkyl tail and the blue colored bead represents the polar head

group.
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In this study, corrosion inhibitor molecules are represented by a CG model, same

as the one employed in our previous study [90]. A corrosion inhibitor molecule has a

polar head group, which has strong affinity for the metal surface. Alkyl tails of corrosion

inhibitor molecules have hydrophobic interactions between them. In this CG model, one

terminal bead represents the polar head group, and all the other beads in the molecule are

hydrophobic and represent the alkyl tail. Oil molecules are represented as linear chains

of hydrophobic beads. Bonds between the connected beads in a molecule are modeled as

harmonic potentials given by,

Vb(r) = k(r − r0)2 (5.1)

where Vb(r) is the distance-dependent bond potential, k is the bond coefficient, r is the

distance between the two connected beads and r0 is the equilibrium bond-length. The angle

between two adjacent bonds in a molecule are restrained via harmonic potentials given by,

Va(θ) = kθ(θ − θ0)2 (5.2)

where Va(θ) is the angle potential, kθ is the angle coefficient, θ is the value of angle between

the bonds and θ0 is the equilibrium angle. The equilibrium angle is set to 180◦ to model

linear corrosion inhibitor molecules. Interactions between all hydrophobic beads, that is,

between the tail beads of inhibitor molecules, between the oil beads, as well as between the

inhibitor tail and oil beads are modeled via Lennard-Jones (LJ) potential with the length

parameter σ, and potential well-depth of ε,

VLJ(r) = 4ε
(
σ12

r12 −
σ6

r6

)
(5.3)

The potential well-depth parameter ε determines strength of the attractive interaction. The

parameter σ determines the effective diameter of the bead. In a LJ potential, at distances,

r < 21/6σ the interaction potential becomes strongly repulsive, whereas, for distances,

r > 21/6σ the potential is attractive. The LJ potential decreases at the rate of r6 and
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therefore is a short-ranged potential. LJ potential is employed to model van der Waals

and hydrophobic interactions between species. Interactions between the polar head beads

and the hydrophobic beads are modeled by purely repulsive Weeks-Chandler-Anderson

(WCA) potential [66]. WCA potential is a truncated and shifted LJ potential that includes

only the repulsive part of LJ potential, with the LJ length parameter σp determining the

effective diameter of the polar bead. The functional form of WCA potential is given by,

VWCA(r) = 4ε
σ12

p

r12 −
σ6

p

r6

 + ε for r < 21/6σp and 0 otherwise (5.4)

In effect, the WCA potential models the excluded volume interactions between species.

In an aqueous environment, polar head groups are solvated and thus do not have a net

interaction with other polar head groups apart from excluded volume because of their

size. The metal surface is represented by a smooth, two-dimensional surface occupying

the bottom face of the simulation box at z = 0. The strong attractive interactions between

the polar head beads and the surface are modeled via a 9-3 potential with the well-depth of

εS . A 9-3 potential is obtained with the LJ potential and is integrated over a semi-infinite

slab made of LJ particles [41]. The functional form of 9-3 potential is given by,

V9−3(z) = εS

(
2

15
σ9

S

z9 −
σ8

S

z8

)
(5.5)

where z is the distance between the beads and the surface. The hydrophobic beads have

only repulsive, hard sphere interactions with the surface. Water is treated implicitly in the

simulation. The effect of water is taken into account by including an attractive hydrophobic

interaction between the alkyl beads. In addition, the motion of the molecules is modeled

via Langevin dynamics (discussed later). The simulation box is periodic in the X and

Y dimensions. To keep a constant simulation volume, reflective boundary conditions are

applied to all beads at the side opposite of the z = 0 surface of the simulation box.

All quantities in this study are defined using reduced units [41]. In reduced units, the

units of energy, mass, length are defined so as to save computational costs in simulations
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and can be easily converted into real units. In this system, the unit of energy is taken as

thermal energy, kBT (kB is Boltzmann constant and T is the temperature), which is set to 1.

The potential well-depth, ε, has units of energy, and therefore is specified with respect to

kBT . For instance, an ε = 0.5 implies that the potential well-depth is half of the thermal

energy. The mass of each bead is set to 1, and the size of each hydrophobic bead, σ, is set

to 1 in reduced units. Kindly refer to our previous publication for more details on reduced

units [76].

5.2.2 Simulation Details:

Langevin dynamics simulations are performed to study adsorption behavior of

corrosion inhibitor and oil molecules on the surface. In Langevin dynamics, the motion

of molecules is modeled to mimic their interactions with solvent molecules. This is

incorporated by applying a Gaussian-distributed random force and a frictional force in the

direction opposite of the velocity to the molecules [41]. In our simulations, the temperature

of 1.0 and damping constant of 0.1 (time units, (ε/mσ2)0.5t) is used [41]. The LJ well-depth

parameter for the interaction between hydrophobic beads, ε is set to 0.065kBT . The well-

depth of the 9-3 potential for interaction between polar head groups and surface is chosen to

be εS = 5kBT . The value of ε was chosen to ensure that hydrophobic interactions between

alkyl tails are of the order of thermal energy [68], and that of εS was chosen to match the

strong affinity of polar head group for the metal surface, obtained from density functional

theory (DFT) calculations [69]. We have shown previously that for ε = 0.065kBT , the

corrosion inhibitor molecules form a self-assembled monolayer (SAM) on the surface

[90]. To study the effect of the length of oil molecules, oil molecules comprised of 10,

19 and 25 alkyl beads per molecule were studied. The length of inhibitor molecules

was kept fixed at 20 beads with 1 polar bead and 19 alkyl beads in each molecule. All

simulations were performed using the Large-scale Atomic/Molecular Massively Parallel
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Simulator (LAMMPS) MD simulations package [70]. For each data point, the simulations

were performed in parallel on eight processors or on a Graphic Processing Unit (GPU).

Equilibrium was obtained after 3 × 109 to 4 × 109 MD time-steps.

5.3 Results and Discussion

5.3.1 Presence of Oil Molecules Promotes Adsorption

To investigate the effect of oil molecules on adsorption of inhibitor molecules, 400

inhibitor molecules (20mers) and 400 oil molecules (19mers) are inserted at random

locations in the simulation box. The diameter of the polar head group of inhibitor molecules

is σp = 2σ. It was shown in our previous study [90, 108] that when σp = 2σ, that

is, when the polar head is twice the size of a hydrophobic bead, the inhibitor molecules

tend to aggregate in cylindrical micelles in the bulk and the adsorbed phase. The size of

the simulation box is 27σ × 27σ in the XY direction and 80σ in the Z direction. As a

reference system, we first study the adsorption behavior of 800 inhibitor molecules (and

no oil molecules). 5.2(a) shows a representative snapshot of the equilibrium state of the

pure inhibitor system. It is observed that the inhibitor molecules with σp = 2σ tend to

aggregate in cylindrical micelles on the surface. An enlarged snapshot of the adsorbed

film is shown in Figure 5.2(b). Figure 5.2(c) shows distribution of the angle made by

the molecular axes of adsorbed molecules with the surface normal, θ.θ = 0◦ implies that

an adsorbed molecule is lying-flat on the surface, and θ = −90◦ means that an adsorbed

molecule is “standing” on the surface with the polar group pointing towards the surface.

The distribution of θ in Figure 5.2(c) is non-zero for all values, with higher values close

to −60◦ and 70◦, which indicates that the adsorption morphology is like that of a squashed

cylinder. Due to the asymmetric geometry of the molecules, the distribution does not peak

at ±90◦. Such adsorption morphologies have been reported in many AFM studies [62].
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Figure 5.2: (a)A snapshot of an equilibrium configuration of the pure inhibitor system

(σp = 2σ). (b) An enlarged snapshot of adsorbed film of the pure inhibitor system

(σp = 2σ). Blue colored beads are the polar head groups, and cyan colored beads are

the hydrophobic tails. (c) Distribution of angles, θ, that adsorbed molecules make with the

surface normal.
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Figure 5.3(a) shows a representative snapshot of the equilibrated system when oil

is added to the inhibitors with σp = 2σ. Figure 5.3(b) shows an enlarged image of

the adsorbed layer. It is clearly seen that oil molecules are co-adsorbed in the inhibitor

layer and the cylindrical morphology of the film transforms into a planar morphology.

Interestingly, a large number of oil molecules are in the adsorbed layer even though the

oil molecules have no affinity for the metal surface. The entrainment of oil molecules

is driven by the hydrophobic interactions between inhibitor tails and oil molecules. The

distribution of angles, θ that adsorbed molecules make with the surface normal now has

two sharp peaks at ±90◦ and no value for intermediate angles indicating that the adsorbed

molecules form a planar self-assembled monolayer (SAM). Therefore, a dramatic change

in the adsorbed morphology of inhibitor molecules is observed with the introduction of oil

molecules.
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Figure 5.3: (a) A snapshot of an equilibrium configuration of the inhibitor+oil system

(σp = 2σ). (b) An enlarged snapshot of configuration of the inhibitor+oil system

(σp = 2σ). Blue colored beads are the polar head groups, cyan colored beads are the

hydrophobic tails, and the red colored beads represent the oil molecules. (c) Distribution

of angles, θ, that adsorbed molecules make with the surface normal.

Next, the adsorption behavior of inhibitor molecules with σp = 2σ is discussed.

These inhibitor molecules have been shown to form a well-packed planar SAM on the

surface [90, 95]. To study the effect of oil molecules on adsorption, we introduce oil

molecules in the system of inhibitor molecules with σp = 2σ. In these simulations, the

simulation box is 20σ×20σ in the XY direction and 80σ in the Z direction to keep volume

fraction of the system the same as the σp = 2σ case. 400 inhibitor molecules (20mers)

and 400 oil molecules (19mers) are randomly inserted into the simulation box. Figure

5.4(a) shows a representative snapshot of an equilibrium state of the reference system
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with only inhibitor molecules present. Figure 5.4(b) shows a snapshot of the system with

oil molecules introduced. Both systems show that the adsorbed layer is a SAM. A good

fraction of oil molecules gets co-adsorbed along with the corrosion inhibitors because of

hydrophobic interactions between the oil molecules and the inhibitor tails. Figure 5.4(c)

shows the distribution of θ for the two systems. Both the systems show signatures of a

planar SAM on the surface.

Figure 5.4: (a) A snapshot of an equilibrium configuration of the pure inhibitor system

(σp = σ). (b) A snapshot of equilibrium configuration of the inhibitor+oil system

(σp = σ). Oil molecules are in red and inhibitor molecules are in cyan with a blue colored

polar head group. (c) Distribution of angles, θ, that adsorbed molecules make with the

surface normal for σp = σ with oil and without oil molecules present.

To quantitatively compare changes in the adsorbed film upon the introduction of oil

molecules, the number of molecules adsorbed per unit area at equilibrium, ρ is plotted in

Figure 5.5. For the σp = 2σ case, the addition of oil molecules promotes adsorption.

Entrainment of oil molecules transforms the cylindrical morphology of adsorbed inhibitor

film into a planar SAM. This results in a higher concentration of molecules that are tightly
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packed on the surface. For the σp = 2σ case, the overall adsorption amount does not

change significantly as the inhibitor molecules by themselves are able to adsorb in a tightly

packed planar SAM. However, the composition of the adsorbed film changes with a good

fraction of oil molecules are co-adsorbed in the film, even when the oil molecules and the

metal surface do not have any attractive interactions in our model.

Figure 5.5: Number of molecules adsorbed per unit area, ρ for σp = 2σ and σp = σ with

oil and without oil molecules present. Error is of the order 10−4.

Our simulation results show that oil molecules have a tendency to be co-adsorbed in

the inhibitor films due to hydrophobic interactions. Interestingly, the entrainment of oil

molecules may result in changing the adsorbed morphology of the adsorbed inhibitor film,

which can result in enhanced adsorption.
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5.3.2 Presence of Oil Molecules Improves Corrosion Inhibition Properties of

Adsorbed Films

How the structural properties of the adsorbed inhibitor films are affected by the

entrainment of oil molecules was also analyzed in this research. The local structural

arrangement of molecules in the adsorbed film was studied by calculating radial distribution

function along the plane of the film, the XY plane, RDFxy(r). RDFxy(r) shows the local

density of molecules around a given molecule divided by the density expected in a uniform

distribution. Therefore, RDFxy(r) = 1 implies that there is no preferential arrangement of

molecules (ideal gas behavior).

Figure 5.6(a) shows the RDFxy(r) of adsorbed molecules for the pure inhibitor system

and for the inhibitor + oil system for the σp = 2σ case. The RDFxy(r) of the inhibitor

only system shows a peak and a shoulder followed by a depletion region indicating that the

molecules are aggregated in micellar structures. On the other hand, for the inhibitor + oil

system, the RDFxy(r) shows regular peaks, indicating presence of a much more ordered

structure in the film. For the σp = σ case (5.6(b)), the RDFxy(r) of the pure inhibitor

system shows regular peaks, a signature of an ordered SAM. Interestingly, for the inhibitor

+ oil system, the peaks of the RDFxy(r) become larger indicating that in the presence of

oil molecules, the film becomes more ordered.
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Figure 5.6: Radial distribution function in the XY plane, RDFxy(r), of adsorbed molecules

in pure inhibitor system(blue) and in inhibitor+oil system (red) for (a) σp = 2σ and (b)

σp = σ.

It is understood that adsorbed inhibitor films form a hydrophobic barrier over the metal

surface and mitigate corrosion. Thus, a larger hydrophobic barrier of the films is preferable.

A simple molecular measure of film hydrophobicity can be defined as the fraction of

adsorbed molecules with their alkyl tails exposed to the solution. Figure 5.7 shows film

hydrophobicity for σp = 2σ and σp = σ for the systems with and without oil molecules.

It is seen that in a pure inhibitor system, film hydrophobicity is around 0.7, indicating that

about 30% of the molecules are adsorbed with their polar head group pointing away from

surface. It is often presumed that a SAM layer of adsorbed molecules forms a uniformly

hydrophobic layer. Contrary to this, our simulations show that the adsorbed film of inhibitor

molecules is patchy with some fraction of polar groups towards the solution. The film

hydrophobicity increases to ∼ 0.9 with the addition of oil molecules.
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Figure 5.7: Comparison of film hydrophobicity for σp = 2σ and σp = σ with oil and

without oil molecules present.

The above results show that the entrainment of oil molecules changes the properties of

adsorbed films, making them structurally more ordered and more hydrophobic. Thus, our

simulation results indicate that the efficiency of corrosion inhibitors should increase when

the adsorbed inhibitor films are exposed to oil.

5.3.3 Effect of Length of Oil Molecules

In reality, oil molecules in contact with an inhibitor in an aqueous environment are

of different molecular sizes. In this section, we discuss the results of how the length of

oil molecules affects the entrainment behavior. In these simulations, oil molecules with

three different tail lengths, comprising of 10, 19 and25 beads are compared (oil10, oil19,

oil25). The polar head group size is set to σp = σ. The simulation box is 20σ × 20σ in
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the XY direction and 80σ at the Z direction. 400 inhibitor molecules (20mers) and 400 oil

molecules are randomly inserted into the simulation box.

Figure 5.8 shows the total number of molecules adsorbed on the surface at equilibrium.

In the system with oil10 and oil19 molecules, the equilibrium adsorption amount is

comparable to the pure inhibitor case. However, in the system with oil25 molecules,

the total number of adsorbed molecules decreases. This decrease in adsorption is due

to aggregation of oil molecules in the bulk phase. With longer tail lengths, the overall

interaction between the tails of inhibitor molecules and the oil molecules are stronger,

which results in aggregation in the bulk. Although the oil10 and the oil19 systems have

similar total adsorption amount, the composition of the adsorbed film is different. Smaller

oil molecules have lower hydrophobic interactions, and therefore fewer number of oil10

molecules are co-adsorbed in the corrosion inhibitor layer in comparison to the oil19

system.
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Figure 5.8: Number of inhibitor molecules adsorbed on the surface at equilibrium for a

pure inhibitor system, or with oil at molecule chain lengths of 10, 19, and 25.

5.3.4 Experimental Confirmation

In 2018, a proprietary project at the ICMT was conducted concurrently with the above

mentioned molecular simulations, which focused on comparison of testing methodology,

inhibitor efficiency, and inhibitor adsorption/desorption. Information from laboratory

testing of a commercial inhibitor (henceforth referred to as proprietary corrosion inhibitor),

with and without the presence of hydrocarbon, is provided for tests focused on efficiency

and persistency under a specific set of environmental conditions.

In order to test the influence of a hydrocarbon on the efficiency and persistency of

corrosion inhibitors, one set of tests was completed without a hydrocarbon present and

the second set of tests contained a 1000ppm concentration (2 ml) of LVT 200 oil added

on top of the 2 liters of brine used in each experiment. Each experiment was conducted
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using a test configuration as shown in Figure 5.9. The system was designed so that a CO2

purged brine could be pumped from the solution reservoir to the working cell and gravity

drained into a CO2 purged cell. Operating procedures were developed so that the working

electrode (RCE) would always remain 100% wetted and never come into direct contact

with the oil layer (if present) on top of the brine. The brine, with an ionic strength of 0.5

and temperature of 80◦C, was sparged in both glass cells with CO2 for 2 hours prior to the

test to remove oxygen. The brine in both glass cells was adjusted to pH of 6.0 using 1 M

NaHCO3 during the deoxygenation.

Corrosion rate testing was conducted with a mild steel rotating cylinder electrode

(RCE) in the 2-liter “working glass cell” (Figure 5.9). The RCEs were made from an

API 5L X65 material; each had dimensions of 12 mm outside diameter ×14 mm height,

were polished to a 600-grit finishand cleaned in an ultrasonic isopropyl alcohol bath before

the tests. In each experiment, the RCE was placed into the glass cell with the purged brine,

the CO2 purged LVT 200 oil was injected on top of the brine (if used), and then rotation

was set at ∼4000 rpm for a 20 Pa wall shear stress (WSS). Electrochemical connections

were made to conduct linear polarization resistance (LPR) measurements for corrosion rate

and electrochemical impedance spectroscopy (EIS) measurements were used to determine

solution resistance.
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Figure 5.9: Experimental configuration for testing inhibitor efficiency and persistency.

The small amount of oil injected on top of the solution would be partially dispersed

into the solution as small droplets at the high rotational speed, but would immediately

separate and return to the top of the solution when the rotation was stopped. Experiments

conducted without inhibitor added showed no influence of the dispersed LVT oil on the

baseline corrosion rate as compared to similar experiments with no inhibitor and no LVT

oil present.

EIS measurements were performed at the open circuit potential (OCP) using a

potential perturbation with an amplitude of 10 mV root mean squared at a frequency

range between 1 Hz to 5 kHz to determine the solution resistance at the beginning of each

experiment. Polarization resistance was obtained from LPR. The working electrode was

polarized from -5 mV to +5 mV with respect to the OCP at a scan rate of 0.125 mV/s with

a sampling period of 2 seconds. Then, the charge transfer resistance (RCT) was obtained
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by subtracting the solution resistance from the polarization resistance. Subsequently,

corrosion current densities, icorr were obtained by using a classical Stern-Geary Equation

resulting in [109]:

icorr =
B

RCT
(5.6)

Where B is a constant (26 mV/decade for CO2 corrosion). The current density was then

converted into mm/year by using Faraday’s law [110]. In the case of the steel corrosion

(iron dissolution), the corrosion rate is, CR (mm/year) = 1.159 icorr.

Each test began with 4 hours of pre-corrosion with or without the presence of oil.

Electrochemical measurements were started within 10 minutes after the RCE was inserted

into solution, as soon as the OCP became stable. After the last LPR measurement for

the 4-hour pre-corrosion, the commercial inhibitor was injected on top of the solution

for a 100 ppm concentration in the total liquid volume. Each test then continued for an

additional 20 hours to observe the decreasing trend of the corrosion rate until a steady state

corrosion rate was obtained. The data from this part of the test would be used to focus

on inhibitor adsorption and inhibitor efficiency. At 20 hours, the RCE was stopped, stir

bar rotation was started in the cell to maintain a fully mixed solution, and increments of

∼ 200 ml of brine would be drained and refilled in the working glass cell to achieve a 5

ppm concentration of inhibitor while keeping the RCE continuously water wetted but never

directly exposed to the oil layer. The change in inhibitor concentration by this dilution

procedure was calculated based on assuming a fully mixed solution after each step in the

dilution process. After the drain and re-fill procedure was complete, which required about

5 minutes, the stir bar was stopped and RCE returned to the 20 Pa WSS setting.

Electrochemical measurements for LPR were then continued until a stable corrosion

rate was achieved (∆CR < ±0.002mm/yr/hr). The data from this part of the test would

focus on inhibitor persistency and final corrosion rate. Each test, with and without a
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hydrocarbon present, was repeated twice and the graphic results shown in Figure 5.10 and

Figure 5.11 represent the average of the two experiments with appropriate error bars.

Figure 5.10: Inhibitor adsorption experiments with Inhibitor # 1 conducted with and

without the presence of a hydrocarbon (80◦C, pH 6.0, 0.5 ionic strength brine, RCE at

20 Pa WSS, 1000 ppm LVT 200).
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Figure 5.11: Inhibitor adsorption and dilution experiments with Inhibitor #1 conducted

with and without the presence of a hydrocarbon (80◦C, pH 6.0, 0.5 ionic strength brine,

RCE at 20 Pa WSS, 1000 ppm LVT 200).

The data for the proprietary corrosion inhibitor tests is shown in Figure 5.10, Figure

5.11, and the composition as provided in the Material Safety Data Sheet (MSDS) is shown

in Table 5.1.
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Table 5.1: Proprietary corrosion inhibitor MSDS listed components

Inhibitor #1 components % content

Methanol 30% - 60%

Substituted aromatic amine 10% - 30%

Quaternary ammonium compound 1 10% - 30%

Fatty acid 5% - 10%

Quaternary ammonium compound 2 5% - 10%

2-mercaptoethanol 5% - 10%

Diethanolamine 1% - 5%

Isopropanol 1% - 5%

Oxyalkylate 1% - 5%

Heavy aromatic naphtha 1% - 5%

Naphthalene 0.1%- 1%

The data in Figure 5.10 shows the trend for the addition of the proprietary corrosion

inhibitor. Without the hydrocarbon present, the addition of the inhibitor provided a

corrosion inhibition efficiency of 99.88%. The average corrosion rate during pre-corrosion

for the experiments without hydrocarbon was 12.4 ± 1.6 mm/year and the inhibited

corrosion rate was 0.015 ± 0.001 mm/yr. With the hydrocarbon present, the addition of

inhibitor provided a corrosion inhibition efficiency of 99.93%. The average corrosion rate

during pre-corrosion for the experiments with hydrocarbon was 11.7±1.9 mm/year and the

inhibited corrosion rate was 0.008±0.001 mm/year. The presence of LVT 200 decreased the

corrosion rate in the presence of an inhibitor film from 0.015±0.001 mm/yr to 0.008±0.001

mm/yr, which is a decrease in the corrosion rate by 46.7%.
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The data in Figure 5.11 shows both the addition and dilution parts of the full

experiment. The dilution procedure was carried out to obtain approximately 5 ppm

of proprietary corrosion inhibitor. The final corrosion rate after dilution to 5 ppm for

experiments without hydrocarbon were 0.093±0.013 mm/year, while in those same type of

tests with hydrocarbon present, it was lower approximately by a factor of two: 0.049±0.006

mm/yr. In terms of inhibitor efficiency, the experiment with hydrocarbon had a 99.58%

efficiency as compared to a 99.25% efficiency without hydrocarbon present.

Persistency of the inhibitor in these tests was defined by when the corrosion rate begins

increasing much more than the random variation of the stable corrosion rate measured

before the dilution procedure. For proprietary corrosion inhibitor, the persistency of the

inhibitor without hydrocarbon present was about 22 hours while the persistency of the

inhibitor with hydrocarbon present was about 26 hours. One can also argue that both tests

with proprietary corrosion inhibitor show a continued persistency as previous tests with

addition of only 5 ppm of proprietary corrosion inhibitor had a stable corrosion rate of

0.140 ± 0.001 mm/year after 20 hours. This could also be an indication of the precision of

the dilution procedure, which is very similar in the tests with no hydrocarbon, where the

tests with hydrocarbon could indicate some influence of partitioning equilibrium between

the oil phase and the solution occurred.

5.4 Conclusion

Previous experimental results have shown that the addition of oil molecules can

reduce corrosion rate by enhancing the efficiency of an inhibitor film, although these tests

did not provide any molecular-level understanding of why and how these oil molecules

influence corrosion inhibitor adsorption for mitigation of corrosion. In this study, we

have used molecular simulations to study how oil molecules affect adsorption behavior

and characteristics of adsorbed inhibitor films. We found that, even though oil molecules
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do not interact with the metal surface, they can be co-adsorbed in the inhibitor layer

because of lateral hydrophobic interactions between the oil molecules and the alkyl tails

of inhibitor molecules. In addition, we observed an interesting morphological transition

in the adsorbed films wherein cylindrical micelles of adsorbed inhibitors get transformed

into planar SAMs.This transition results in a significant increase in the adsorption of

molecules on the surface. Different lengths of oil molecules have different entrainment

tendencies. Large oil molecules lead to aggregation of molecules in the bulk phase, thereby

reducing adsorption, while smaller oil molecules have little tendency to beco-adsorbed in

the inhibitor film.Our experiments have revealed that the presence of a hydrocarbon phase

is beneficial in corrosion mitigation for a commercial inhibitor. In the experiments, the

inhibitor layer adsorbed at the metal surface would be expected to contain some of the

hydrocarbon phase because of the increase in the final inhibition efficiency. Since the

molecular model is focused on the diffusion boundary layer right next to the metal surface,

the mechanisms portrayed by the molecular model are confirmed to be correct.

Acknowledgement. This work was supported by the NSF CBET grant 1705817. The

experiments were performed as part of a proprietary British Petroleum (BP) project at the

Institute of Corrosion and Multiphase Technology (ICMT) that focused on comparison

of testing methodology, inhibitor efficiency, and inhibitor adsorption/desorption, which

produced a proprietary document: J. Dominguez Olivo, C. Prieto, B. Brown, S. Nesic,

Testing Methodology for Inhibitor Evaluation, Proprietary testing on inhibitor persistency.

Since the project also included the testing of commercial inhibitors in the presence of oil,

permission for publication was requested and was granted by the proprietary project lead

at BP, Will Durnie, who is the Principle Corrosion Engineer of BP with research focus on

inhibitor use, efficiency and persistency. The authors are grateful to BP for granting us the

permission to include these experimental results in this publication. The authors also thank

researchers at the ICMT for useful discussions. XK thanks the support of Ohio University



124

Graduate College Fellowship for the year 2018-19. Computational resources for this work

were provided by the Ohio Supercomputer Center and NSF XSEDE grant DMR190005.



125

6 Adsorption Behavior of Corrosion Inhibitors on

HeterogeneousMetallic Surfaces Studied usingMolecular

Simulations

6.1 Introduction

In previous work, adsorption of surfactants was studied on a uniform metal surface.

However, in field conditions, the steel surface is not uniform as it is often covered by a

layer of corrosion products formed as a consequence of the corrosion process [111]. As a

result, the performance of corrosion inhibitors varies with different microstructures of the

corrosion products as well as in varying field conditions [112–114]. While most studies

have reported that an increase in the pre-corrosion time results in the decrease of corrosion

efficiency [112, 113, 115], synergistic interactions between the corrosion inhibitor and

corrosion product that help with erosion-corrosion protection have also been reported

[116]. To better understand how pre-corrosion or a non-uniform metal surface changes the

adsorption behavior of corrosion inhibitors from a molecular perspective, heterogeneous

surfaces are introduced in the simulation system.

6.2 Simulation System and Methods

The same coarse-grained bead-spring model of corrosion inhibitor molecules is used

as in our previous studies [90]. All quantities used in the simulation system are defined in

reduced units [65], and the thermal energy KBT is taken as the unit of energy, KBT=1 and

the size of the alkyl tail bead, σ is taken as the unit of length. The simulation box is of the

size 20×20 and periodic in the x−y directions. The metal surface is at z = 0, and the box size

is 40 at the z direction. 400 inhibitor molecules are randomly inserted into the simulation

box. To model a heterogeneous surface, part of it is modeled as a metal patch with attractive

interactions with the polar bead of the corrosion inhibitor molecules as before. The rest of
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the surface is considered to have no interactions with the molecules except for their hard

wall repulsion. The attractive interaction between the metal patch and the polar bead of the

inhibitor molecule is modeled by a 9-3 interaction potential. Two systems are studied: in

the first system, one circular-shaped metal patch is considered. In the second system, many

circular metal patches are considered. In fact, because of periodic boundary conditions in

the x−y directions, the two systems are actually the same system but with the metal patches

at different distances from each other. All simulations are conducted using the Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS) package [70].

6.3 Results and Discussion

6.3.1 Single Metal Patch System

The circular-shaped metal patch is placed at the center of the z = 0 face of the

simulation box. The radius of the patch is varied from 1 to 4.

6.3.1.1 Adsorbed Amount

Figure 6.1 shows the total number of molecules adsorbed on surface at equilibrium as

a function of the area of the metal patch. The blue line shows the simulation results, and the

red line shows the theoretical estimate of the adsorption amount, wherein it is assumed that

the corrosion inhibitor molecules only adsorb on the metal patch with the packing density

equal to that of the SAM [90]. It is observed that the number of adsorbed molecules is

significantly larger than the theoretical estimate. Since the surface other than the metal

patch has no interaction with the corrosion inhibitor molecules, this result indicates that the

molecules can adsorb outside of the metal patch due to the lateral tail-tail interactions.

Figure 6.2(a) shows the percentage of surface covered by inhibitor molecules as a

function of the metal patch surface area. As the size of the metal patch increases, the

coverage also increases, and at r = 4, full coverage is achieved. It is interesting to observe
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that even with a small metal patch, teh inhibitor molecules are able to fully adsorb onto the

surface and form a SAM. Figure 6.2(b) shows a snapshot of the equilibrium configuration

of the SAM with the metal patch shown in yellow.

Figure 6.1: Number of adsorbed molecules N, as a function of the surface area of the metal

patch. The theoretical line shows the number of molecules that would adsorb if they only

adsorb on to the metal patch area.

6.3.1.2 Structure of the Adsorbed Corrosion Inhibitor Film

Figure 6.3 shows the fraction of adsorbed molecules with their polar group pointing

toward metal surface, f , as a function of the radius of the metal patch. Inhibitor molecules

form a SAM in both systems shown here. For the metal patch, the f decreases as
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Figure 6.2: (a) Fraction of the surface covered by inhibitor molecules as a function of the

surface area of the metal patch.(b) Snapshot of the equilibrium configuration for the metal

patch with radius r = 4.

compared to the full metal surface. This is expected as in the case of the metal patch, the

molecules outside of the patch adsorb due to the lateral tail-tail interactions, and therefore

are indifferent as to the orientation in which they adsorb in the SAM.

6.3.2 Multi-patch System

In this section, we discuss results of the system in which there are four circular-shaped

metal patches of radius 0.5 or 1 in the simulation box.

6.3.2.1 Adsorbed Amount

Figure 6.4 shows a bar plot of the number of adsorbed molecules on metal surface as

a function of the metal patch surface area. Comparing to results from the bulk simulation

where the surface has no interaction with corrosion inhibitor molecules, the adsorption
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Figure 6.3: Fraction of adsorbed molecules with their polar group pointing toward surface.

amount in these systems shows that with a very small metal patch area as well, corrosion

inhibitor molecules can adsorb, eventually forming a SAM and covering the entire surface.

The diameter of the polar bead of the inhibitor molecule is σ = 1, so for a metal patch of

radius = 0.5, only one inhibitor molecule should be able to adsorb onto the patch. However,

a SAM forms on the surface. This indicates that inhibitor molecules can adsorb even when

there are a few anchoring sites on the surface, and the lateral hydrophobic interactions are

helping the inhibitor molecules to adsorb onto the surface.
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Figure 6.4: Number of adsorbed molecules N, as a function of the surface area of the metal

patch.

6.3.2.2 Film Strcture

Figure 6.5 shows the fraction of adsorbed molecules with their polar group pointing

toward metal surface, f , as a function of the radius of the metal patch. Compared to the full

metal surface, f decreases and is only around 0.5. This is because with only a few small

metal patches on the surface, there is no preference for the molecules to adsorb with their

polar head pointing toward surface. The adsorbed molecules have equal probability to be

pointing toward surface or the solution.

6.3.3 Distance between Metal Patches Play an Important Role in Adsorption

Due to the periodic boundary conditions applied in both systems, the two systems

basically represent the same system wherein there are circular metal patches at certain
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Figure 6.5: Fraction of molecules with their polar group pointing toward surface.

distances from each other. From the above analysis, it is observed that the inhibitor

molecules can form SAM in the multi-patch system even when the radius of the metal

patch is small. Therefore, the distance between the metal patches may be playing an

important role in governing the formation of the SAM. To investigate the effect of distance,

the number of adsorbed molecules in both the system are plotted together as a function

of the distance between the metal patches, as shown in Figure 6.6. In the Figure 6.6, it

is observed that the when the metal patches are close to each other, a SAM of inhibitor

molecules is formed. The size of the metal patch is less significant. Molecules initially

adsorb on the metal patch(es) due to the strong affinity between the polar head and the

patch. After the initial adsorption, the lateral hydrophobic interaction between the alkyl

tails drive the adsorption. If the metal patches are close to each other, then as long as there

are a few anchoring sites on the surface (metal patch area), the molecules can adsorb due
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to the lateral tail-tail interactions. Also because the metal patch regions are close to each

other, the inhibitor molecule clusters that is already formed on the surface can merge and

fully cover the surface.

Figure 6.6: Number of adsorbed molecules as a function of distance between patches.

6.4 Conclusion

Previous studies have shown that when a surface is pre-corroded and/or nonuniform,

the inhibition efficiency is different as compared to a pristine metal surface. In this study, a

heterogeneous surface is introduced to study the adsorption of inhibitor molecules on such

surfaces and the characteristics of the adsorbed inhibitor films. It was found that, even

though large parts of the surface do not have direct affinity for the inhibitor molecules,
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the molecules can still achieve full adsorption coverage because of the lateral hydrophobic

interactions between their alkyl tails. In addition, the SAM formed has a good fraction of

molecules pointing toward the solution. Furthermore, we find that the distance between the

etal patches is an important factor governing the adsorption amount. When the distance

between metal patches is small, inhibitor molecules have a tendency to form SAM. Finally,

the size of metal patches is found to be not as important. In the atomic force microscopy

experiments conducted at ICMT, it has been reported that inhibitor molecules do adsorb on

the parts of the surface with a corrosion product. Furthermore, different magnitude of force

is required to remove inhibitor molecules from the corrosion product part and the metal

part of the surface. Our molecular simulation work provides insights as to how inhibitor

molecules are able to adsorb on areas with the corrosion product. Furthermore, since the

lateral hydrophobic interactions are weaker than the direct interaction between the inhibitor

molecules and the metal surface, these molecules are removed relatively easily.
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7 Salt- and pH-Dependent Viscosity of SDS/LAPB

Solutions: Experiments and a Semiempirical Thermodynamic

Model8

7.1 Introduction

A large number of commercial personal care formulations (e.g., shampoos, body-

washes) use a combination of an anionic surfactant like sodium lauryl or laureth sulfate

(SLS or SLES) with the zwitterionic cocamidopropyl betaine (CAPB) as a co-surfactant

(10-20% of the total amount of surfactant). In recent years, the push for milder, sulfate-

free and natural surfactants has expanded the formulation space to a much larger chemical

space [117, 118]. A model based way to develop formulations is therefore critical for rapid

and efficient prototyping. Importantly, successful commercial formulations have to be opti-

mized for multiple endpoints - suitable viscosity and rheology, lather, cleansing efficiency,

coacervation phase behavior with cationic polymers [119–122], etc. Hence, a suite of the-

oretically rigorous models that are also practical enough to be used in industry are needed

- by practical, we mean that it requires relatively few parameters, and that it should be easy

to measure/infer these parameters in an industrial setting for a wide range of surfactant

combinations and ratios, pH, and ionic strength.

In this contribution, we focus on an important metric for the consumer acceptability of

commercial formulations - the zero shear viscosity, which is a measure of product texture.

For historical SLS rich formulations (with some CAPB), simple salt (NaCl) is used to

thicken formulations and achieve a desired viscosity. Salt reduces electrostatic repulsion

between the surfactant headgroups, which promotes the elongation of surfactant micelles,

8 Adapted with permission from Jamadagni, S. N., Ko, X., Thomas, J. B., & Eike, D. M. (2021). Salt-
and pH-Dependent Viscosity of SDS/LAPB Solutions: Experiments and a Semiempirical Thermodynamic
Model. Langmuir, Copyright(2021) American Chemical Society.
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and transforms spherical micelles to worm-like micelles [123, 124]. At sufficiently high salt

concentrations, the worm-like micelles transform into branched micelles and the viscosity

again reduces [125–127]. While these principles are well understood, we lack a quantitative

model to predict viscosity as a function of composition, especially over a wider range of

SLS/CAPB ratios (where as we discuss below, pH effects also become important).

The rheology of worm-like micellar solutions depends on the structure and dynamics

of the elongated micelles, similar to those of long polymers [128, 129]. Extending the work

of Cates and collaborators [128], Ron Larson and co-workers have developed sophisticated

models of the full frequency dependent linear visco-elastic spectrum [i.e., G′(ω),G′′(ω)]

as a function of structural and dynamical parameters such as the micelle persistence length

and radius, and the micelle breakage and reptation time scales[130, 131]. These models can

be used in forward (i.e., use those parameters to predict the linear viscoelastic spectrum)

or in reverse modes (i.e., use rheological measurements to infer those parameters using

the POINTER algorithm [130]). However, linking the structural and dynamical parameters

of the micelle to its chemical composition in an easily accessible framework to enable

product development is difficult. Explicit all-atom [132, 133] and coarse-grained molecular

dynamics (MD) [134, 135] and dissipative particle dynamics (DPD) simulations [136–141]

have shown promise; but the ability to use them for rapidly scanning a large formulation

space remains challenging for two reasons: the parameterization of surfactant headgroups

and the well-known limitations of the lengthscales and timescales accessible to molecular

and coarse-grained simulations.

Hence, fast, non-simulation based methods are attractive; two of the most popular

approaches are the regular solution theory (RST) approach pioneered by Holland and

Rubingh [142, 143] and the more complex molecular thermodynamic (MT) approach

pioneered by Nagarajan and co-workers [144, 145] and Blankschtein and co-workers [146–

148]. In the simpler RST approaches, the excess chemical potentials of the surfactants in
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the micellar pseudo-phase are modeled with a simple Margules model, parameterized by

a single β parameter between each pair of surfactants that captures the non-ideality of the

interactions. The β parameter can be estimated by fitting experimental CMC or surface

tension data to the theory.

In the MT approach, the transfer free energy of a surfactant molecule from its

monomeric state in aqueous solution into the micelle is modeled. For this, the transfer free

energy is broken up into different contributions - entropy of the alkyl tails, hydrophobic,

steric, an interfacial tension etc. and each term modeled suitably. In a series of recent

papers, Danov et. al. [149–152] have used a sophisticated version of such a theory to

calculate the transfer free energy into the hemispherical end-cap and cylindrical region

of a non-ionic and ionic spherocylindrical micelles. The difference, µsph − µcyl, is the

driving force for micelle elongation. This approach is promising but could be challenging to

extend to complex mixtures of ionic surfactants, and to model the effect of pH (for titrable

surfactants). Further, it also requires a large number of parameters (e.g., to describe tail and

headgroup geometry, chain packing, ion condensation in the Stern layer, activity coefficient

models for ions at high ionic strengths in the micelle hydration shell etc.) which can be

challenging to obtain for different surfactant architectures. Hence, as described below, we

have chosen the simpler RST of Rubingh and Holland [142] to model the thermodynamics

of mixed micelles, with the β parameter determined experimentally or estimated using

suitable heuristics.

In this chapter, we show that we can link the zero shear viscosity to composition

(surfactant ratios, pH, salt) explicitly using an extended or augmented RST model, where

RST is extended with (i) the Henderson-Hasselbalch equation to describe the pH dependent

protonation-deprotonation equilibria of monomers in solution (as in Rathman and Christian

for pure dodecyl amine oxide) [153] and (ii) the effect of salt is handled at a simple Poisson-
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Boltzmann level. While we have used RST as the thermodynamic framework here MT or

other simulation based approaches can also be used in principle.

In the framework of Cates and co-workers, the zero shear viscosity is determined

by the timescales for relaxation of micelles by reptation (akin to normal polymers) and

breakage, and is dominated by the smaller of these timescales [128, 154]. Since (i)

breakage rates are more amenable to relate to a molecular thermodynamic framework

(discussed below) and (ii) fits of rheological data by the POINTER algorithm [130] by our

collaborators, Vu et. al. [155] showed that small changes in composition, pH and salt that

affect viscosity significantly is because of changes in the dynamics of micelle breakage, we

explored the correlation between thermodynamic parameters that affects micelle breakage

with the experimental zero shear viscosity measurements.

A historically relevant work on micelle breakage is the theoretical framework of

breakage of single component spherical micelles by Aniansson and Wall [156, 157].

Aniansson and Wall use the analogy of a driven diffusion in the micelle aggregation number

space to describe the population flux between surfactant monomers and full micelles. In

this model, both surfactant monomers and fully formed micelles exist in large numbers.

However, micelles form and break up by step-wise association/dissociation of individual

surfactant monomers, and the concentration of these pre-micellar aggregates is very small

and there exists pre-micellar aggregates of a critical size that are the ‘transition state’. If

the aggregation number exceeds this, the process proceeds to form full micelles; otherwise

the pre-micellar aggregate disintegrates into monomers again [158]. Importantly, due to

the diffusion-driven nature of micelle formation, the rate of micelle breakage (with a time

constant commonly referred to as τ2) depends strongly on the free monomer concentration

(which is the same as the critical micelle concentration (CMC) for single surfactants) - i.e.,

τ2 ∼ CMC−n with n > 1. We anticipate that the breakage of worm-like micelles may show

a similar relationship with a thermodynamic parameter like the CMC, and indeed there is
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evidence that this is true in simple systems [159, 160]. This motivated the development of

a thermodynamic model for activity coefficients and free monomer concentrations of the

different surfactants in mixed micelles as a function of the pH and salt and an attempt to

correlate these quantities with the zero shear viscosities.

The rest of the paper is organized as follows. First we describe our thermodynamic

model for surfactant activitiy coefficients. We then present experimental results of the salt

and pH dependent viscosity of SDS/LAPB mixtures over a wide range of SDS/LAPB ratios,

and associated NMR experiments that track the protonation state of the zwitterionic betaine.

We then show that the excess free energies of the surfactants is an excellent predictor of

the viscosity of these solutions. Finally, we suggest ways to generalize this approach using

Bayesian models.

7.2 Thermodynamic Model

In this section, we briefly review the RST theory for mixed micelle thermodynamics,

and then describe our thermodynamic model in detail. If titrable surfactants are present,

the model provides the activity coefficients as well as the amounts of the deprotonated

and protonated states of the surfactant - i.e., the complete composition of the micelle. A

summary of the different physical relationships is provided in Table 7.1 with further details

discussed below.

7.2.1 Overview of Mixed Micelle Thermodynamics

The basics of this theory for mixtures of non-titrable surfactants has been covered

in detail in many papers starting with Holland and Rubingh [142, 143]. Since we are

concerned with prediction of micellar properties at high surfactant concentrations, we

assume that overall composition (αi in the notation of Holland et. al. [142]) and

micellar composition (xi) are identical. At low total surfactant concentrations (∼CMC),
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an additional mass balance constraint has to be used to solve the set of equations below as

the mole fractions in the micelle and solution pseudo-phases can differ significantly.

At equilibrium the thermodynamic activities of the surfactant in the monomer and the

micellar phase are equal.

ai,mon = ai,mic (7.1)

The activity in the micelle is calculated using the ‘β’ parameter model for the activity

coefficient, γi.

ai,mic = γi,micxi,mic (7.2)

where xi is the mole fraction of the ith surfactant in the micelle. The β parameter

model is essentially a multi-component Margules model for the excess Gibbs free energy:

Gex

RT
=

n∑
i< j

βi jxix j (7.3)

ln(γi) =

 n∑
j=1, j,i

βi jx j

 − Gex

RT
(7.4)

The activity of the surfactant monomer is given by:

ai,mon =
ci,mon

CMCi
(7.5)

where CMCi is the CMC of the ith surfactant. If there are no titrable surfactants and the

concentration of surfactants is high, the mole fraction of surfactants in the micelle, xi,mic,

is the same as the overall composition. Then, Eqn. 7.2 and Eqn. 7.3-7.4 can be used

to calculate the activities of the surfactant and Eqn. 7.5 can be used to calculate the free

monomer concentrations if the CMCs of the pure surfactants are known.

7.2.2 Titrable Surfactants at High Total Surfactant Concentration

If the surfactant blend contains one or more titrable surfactants, the mole fractions

of the protonated (HS ) and deprotonated (S −) surfactants in the micelle depend on pH.
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Thus solving for the composition of the micelle requires a self-consistent solution of the

following equations for each titrable species. The activities of the monomer in the solution

phase are given by [142]:

aS −j ,mon =
cS −j ,mon

CMCS −j

(7.6)

aHS j,mon =
cHS j,mon

CMCHS j

(7.7)

The activities of surfactants in the micellar phase can be calculated via the β parameter

model with the pH dependent mole fractions xS −j ,mic and xHS j,mic being the unknowns to

solve for. The mass balance constraint implies xS −j ,mic + xHS j,mic = xS total
j ,mic - i.e., there is

only one non-trivial unknown for each titrable species
(
xS −j ,mic

)
. These set of equations can

be closed by equating the chemical potentials in the micellar and monomer phase using the

bulk pKa and the Henderson-Hasselbalch Equation:

cS −j ,mon[H+]

cHS j,mon
= Ka (7.8)

=⇒
cS −j ,mon

cHS j,mon
= 10pH−pKa (7.9)

This yields the closure for the self-consistent solution of the β parameter model:

aS −j ,mon

aHS j,mon
=

aS −j ,mic

aHS j,mic
=

CMCHS j

CMCS −j

 10pH−pKa (7.10)

Equations 7.2, 7.3, 7.4 and 7.10 can thus be solved with an iterative least-squares

solver to yield the pH dependent composition of a mixed micelle comprising an arbitrary

number of titrable components, and the free monomer concentrations can then be obtained

from Eqn. 7.5.

7.2.3 Effect of Added Salt

To model the effect of added salt, we need to consider its effect on the excess chemical

potential (or activity coefficient) of both surfactants in their monomers (and corresponding
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pure micellar phases) and in the mixed micellar pseudo-phase. We begin with the effect on

the surfactant monomers:

7.2.3.1 Pure Component CMCs

The CMC and therefore the free monomer concentrations of ionic surfactants reduces

with increasing salt concentration, and this is primarily an electrostatic effect (the

hydrophobic driving force for micellization also increases slightly with increasing salt

level). Following Healy et al.[161], the effect of added salt can be modeled by considering

the change in electrochemical potential of the ionic surfactant in the pure micelle when salt

is added:

δµex ≈ zFδψ (7.11)

and z is the valence and F = eNa = 96, 485 C/mol is the Faraday constant and δψ is the

change in the electric potential at the micelle water interface. There will be much smaller,

secondary contributions to δµex from changes to the micelle shape and aggregation number

that affect the entropy of surfactant tails and possibly changes to the hydrophobic hydration

of methyl groups near the surfactant headgroup that we have not included in this model.

Integrating Eqn. 7.11 [and since ∆µex = RT ln(CMC/CMC0)], we get:

ln
(

CMC
CMC0

)
=

zF(ψ − ψ0)
RT

(7.12)

where CMC0 is the CMC with zero-added salt and where ψ and ψ0 are the electric potential

at the micelle water interface in the presence of and with no added salt respectively. The

electric potential at the micelle water interface, ψ (or ψ0) can be calculated by solving the

non-linear Grahame Equation [162]

σ2

2εε0kbT
=

∑
i

ciexp
[
(−zieψ/kbT ) − 1

]
(7.13)
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whereσ is the charge density and the summation runs over all ions (this form of the Graham

equation is valid for a flat interface; so using it here is an approximation). For a spherical

micelle, the charge density can be estimated as:

σ ≈
Naggze(1 − α)

4πr2
m

(7.14)

where Nagg is the aggregation number of the micelle, and r is the radius of the micelle. For

a micelle formed by SDS surfactants at room temperature, z = −1, e = 1.609 × 10−19C,

and α ≈ 0.25 is the degree of counterion condensation within the Stern layer [163], and

Nagg ≈ 60, this yields σ ≈ 0.09 and 0.063 C/m2 for r = 2.5 and 3.0 nm respectively.

Healy et al.[161], report that ψ ≈ −130 to −140 mV for pure SLS micelles with no added

electrolyte. To be consistent with this measurement, Fig. 7.1 suggests σ ≈ 0.05 − 0.06

C/m2. Fig. 7.1 also shows that the exact choice of σ doesn’t matter much for how salt

affects the CMC ratio at low salt levels or if the charge density is sufficiently high (σ > 0.06

C/m2). Finally Fig. 7.1 also shows that the predicted CMC reduces as a function of added

salt for anionic micelles, with a slope of ≈ 0.75 on the log-log plot, which is close to the

experimental results (a slope of ≈ 0.8) from Naskar et al. [164].

7.2.3.2 Effect of Salt on Activity Coefficients in the Micelle

We propose that the change in the excess (electro) chemical potential of a surfactant

in the mixed micelle due to added salt can similarly be modeled as:

ln(γi) = ln(γi,0) + (ψ − ψ0({xi,0}, csalt = 0)zie/kT (7.15)

where ln(γi,0) is the no-added salt activity coefficient and ψ0 is the salt free electric potential

and is again calculated via the Grahame Equation. The charge density of the mixed micelle

is given by:

σ =
Nagge(1 − α)

4πr2

∑
xizi (7.16)
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Figure 7.1: (A) Effect of salt on the electric potential, ψ (from Eqn. 7.13), (B) the change

in the electric potential compared to the no-added salt case and (C) the effect on the CMC

(from Eqn. 7.12) for anionic micelles of different charge densities. The CMC with no

added salt, CMC0 = 8 mM in this example calculation.

However, in the absence of knowing Nagg, r and α for arbitrary blends of anionic, titrable

and zwitterionic surfactants as a function of pH, we propose to scale the charge density by

that of a fully anionic micelle. Thus:

σ ≈ σ∗
∑

xizi (7.17)

withσ∗ = 0.064 C/m2. An alternative form to make the model more chemistry specific

could be something like:

σ ∼
∑

(xizi)/
∑

(xiAi) (7.18)

where Ai is the headgroup size, in combination with a heuristic for Ai(e.g., Ai =

A0(MW/MW0)2/3, where MW is the molecular mass of the headgroup and A0 an MW0

are the values for a reference headgroup). For now, we will use Eqn. 7.17. We also note

that xi is a function of the micelle water electric potential, ψ and hence is a function of csalt.

For micelles that contain a high fraction of zwitterionics or titrable anionic surfactants

near their pKa,
∑

(xizi) can be small, ranging from -0.3 to -0.5 leading to |σ| < 0.03.
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Since commercial formulations can contain between 1-3 wt% NaCl (170-500 mM), these

compositions are in the regime where ∆ψ = ψ− ψ0 deviates substantially from the limiting

case of very high charge density shown in Fig. 7.1B.

7.2.4 Final Algorithm

Combining everything above, we have the following numerical workflow to calculate

the thermodynamic state (mole fractions, activities etc) for any composition, pH and salt

concentration as:

1. Solve the set of coupled equations for the mole fractions of the titrable species as

outlined in Sec. 1.1 and 1.2 for the no-added salt case ({xi,0}). Set σ0 = σ∗
∑

(xi,0zi)

(Eqn. 7.17) and calculate ψ0 by solving Eqn. 7.13 with csalt = 0.

2. Solve the following set of coupled equations for any added salt concentration (csalt):

ln
[
γi,mic ({x}, csalt)

]
= ln

[
γi,mic({x}, csalt = 0)

]
+ ∆ψ(σ, c′±)

zF
RT

(7.19)

σ = σ∗
∑

(xi[c′salt]zi) (7.20)

c′+ = csalt +
∑

j

Nai,sur f (7.21)

c′− ≈ csalt +
∑

CMC0,S −j (7.22)

where ∆ψ = ψ − ψ0 and ψ(σ, c′±) is again calculated via Eqn. 7.13. The expression

for c′+ includes the sodium counterions that come with the surfactant. The expression

for c′− is an approximation because the CMC also changes with added salt. But, it’s

accurate at low salt levels, and at high salt levels, the first term on the RHS dominates

the second. Finally, we also have the Henderson-Hasselbalch closure equation for the

ratio of the activities of the protonated and deprotonated surfactants.
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aS −j ,mic

aHS j,mic
=

xS −j ,micγS −j ,mic

xS −j ,micγHS j,mic
=

 CMCHS j

CMCS −j (csalt)

 10pH−pKa (7.23)

7.2.5 Example Calculations with the Model

Figure 7.2: Thermodynamic properties of a 50/50 (equimolar) SDS/LAPB micelle as a

function of pH and salt. The top three panels shows the excess chemical potentials, ln(γi)

of the three surfactants. Note that the Y-axis scales are not the same for different panels.

Panel D shows the fraction of LAPB that is protonated and panel E shows the micelle-water

electric potential. Panel F shows how ln(γi) of the two charged species, SDS (open circles)

and LAPB+ (filled diamonds) vary with eψ/kbT .

Before using the thermodynamic model to interpret experimental viscosity measure-

ments, we first present calculations for an equimolar and a 80/20 SDS/LAPB mixture as
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Figure 7.3: Same as Fig. 7.2 but for an 80/20 SDS/LAPB mixture.

a function of pH and salt. In all of the analysis, we take CMCS DS = 8 mM, CMCLAPB =

2.0 mM, CMCLAPB,+ = 1.9 mM as mentioned in Table 1. σ∗ = 0.064 C/m2. β parameters

was set at βLAPB/LAPB+ = −2.5, βS DS/LAPB = −5.0, and βS DS/LAPB+ = −11.6. (The choice of

these β parameters is explained after we discuss results from the NMR experiments). For

an equimolar mixture we observe several interesting features in Fig. 7.2:

• ln(γS DS ) decreases with increasing ln(csalt), and also reduces with decreasing pH.

ln(γLAPB+) shows the opposite trends - increasing with added salt and reducing with

increasing pH.

• The behavior of both ln(γS DS ) and ln(γLAPB+) can be understood by examining how

the micelle/water potential, ψ changes with pH and salt (panel E). As expected,

increasing salt screens electrostatic interactions and reduces the magnitude of ψ.
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Similarly, as the pH is reduced and some of the zwitterionic LAPB becomes

protonated and cationic, the net charge on the micelle becomes less negative, which

again reduces the magnitude of ψ. The change in the excess chemical potential of the

charged species is dominated by this electrostatic effects: ∆ ln(γ) ≈ ze∆ψ/kbT , and

since z = −1 for SDS and +1 for the protonated LAPB, and hence they respond in

opposite directions to changes in pH and salt concentrations. Panel F where ln(γ) is

plotted against ψ makes this clear.

• Zwitterionic LAPB: ln(γLAPB) of the neutral species is independent of the salt

concentration at high pH and increases slightly with increasing salt at low pH. It also

increases with increasing pH, as the concentration of the protonated LAPB increases.

However, in general the magnitude of the charges are small compared to that for the

charged surfactants (Panels A, B and C are not on the same scale).

• Finally, the data at pH 3.0 appears to show qualitatively different trends at high salt

concentrations which can be rationalized as follows: at such a low pH, as Panel D

shows, almost all the LAPB is protonated at high salt concentrations. Since we have

an equimolar SDS/LAPB mixture, the micelle is thus net charge neutral at high salt

concentrations (Panel E shows ψ ≈ 0 at pH 3 and csalt > 102 mM). Consequently,

as Panels A and C show, µex of SDS and protonated LAPB no longer change with

additional salt.

In contrast, Fig. 7.3 shows that when the total mole fraction of LAPB in the micelle is

lower (0.2) ln(γS DS ) and ψ both show a much smaller pH dependence. However, because

the micelle contains more anionic surfactant, ln(γLAPB+) is much more negative. Finally,

comparison of Panel F of Figs. 7.2 and 7.3 show the same qualitative behavior (or slope)

of ln(γ)(eψ/kbT ), but the curves are shifted.
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7.3 Materials and Methods

7.3.1 Materials

We used reagent grade SDS from Sigma Aldrich. The usual industrial/commercial

grade CAPB comes with a significant amount of sodium chloride as it is a byproduct of the

surfactant making process (5-6 wt% salt in the 30 wt% surfactant solution). It also has a

broad alkyl tail length distribution (C12 ≈ 50%). We therefore used a low salt version of the

zwitterionic surfactant, Lauramidopropyl betaine(LAPB) from Solvay (Commercial name:

Mackam DAB ULS IS), where the excess salt is removed by dialysis, and the surfactant

has a much narrower tail length distribution (> 95% C12). This surfactant is supplied as a

30 wt% solution and contains less than 0.5 wt% NaCl.

7.3.2 Sample Preparation

Surfactant solutions containing a total of 12 wt % surfactant were prepared with

different SDS/LAPB weight ratios (9:3, 8:4, 6:6, 3:9). The corresponding molar

concentrations and mole fractions are given in Table 7.2. Stock solutions of each

SDS/LAPB system were prepared by first combining 20 wt% SDS and LAPB stock

solutions and diluting them with deionized water to the desired surfactant concentration

in each system. Citric acid or hydrochloric acid was used to lower the pH. All solutions

were equilibrated for 24 hours at room temperature before any viscosity measurements

were conducted.

7.3.3 Viscosity Measurements

The shear viscosity were measured for these formulations in pH range of 4.5-6.0 and

added salt of up to 2 wt% using a TA Discovery HR-3 rheometer. An additional set of

experiments were performed with no added salt exploring the low pH range (up to pH

∼2.0). The viscosities were measured at 26oC over a range of 0.1 to 100 s−1 using a cone
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and plate geometry (2o cone angle, 40 mm diameter). The viscosity of worm-like micellar

solutions usually shows a plateau region at low shear rates (≈< 1s−1) and a power-law

shear thinning behavior at higher shear rates, and eventually plateauing again at very high

shear rates. The zero shear viscosity was therefore obtained by fitting a Carreau model that

captures these features to the experimental data using the TRIOS software package from

TA Instruments.

7.3.4 NMR Measurements

Starting surfactant solutions as described in Materials section were 30 wt% in H2O for

LAPB and reagent grade SDS powder. Diluted surfactant solutions were then made with

D2O and 1mM sodium 2,2-dimethyl-2-silapentane-5-sulfone (DSS) as internal reference

standard. The resulting solution was therefore a surfactant solution in a a H2O/D2O

mixture. A series of solutions for each surfactant (surfactant mixture) were prepared

in increments of 1 pH value by adjusting solution pH with either sodium deuteroxide

or deuterium chloride solutions. Solution samples were then transferred to 5-mm NMR

tubes filled to a 5-cm sample height. The 1H NMR experiments were performed at

25oC and recorded at 600 MHz on a Bruker Avance III spectrometer equipment with 5

mm Broadband Prodigy Probe. A π/2 pulse length of 12 µs was used for all 1H NMR

experiments, using standard water suppression (noesypr1d) with presaturation frequency

of 4.7 ppm, 40s delay 8 scans and 2.7s acquisition time. NMR data was processed using

MestReNova software (Mestrelab Research, S.L., Santiago de Compostela, Spain). All

spectra were then referenced to DSS at 0 ppm. The ppm value was then recorded for peaks

of interest at various pH values for all solutions analyzed.
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7.4 Experimental Results

7.4.1 Viscosity Measurements

7.4.1.1 Effect of Added Salt

Fig. 7.4 shows the results of the first set of experiments where viscosities of each

formulation in pH range 4.5-6.0 and added salt of up to 2 wt% were measured. Several

interesting observations can be made: (i) The sensitivity of viscosity to added salt is very

strongly composition dependent - the viscosity increases moderately with salt in SDS rich

formulation (9 wt% SDS/3 wt% LAPB) but increases more rapidly with increasing levels

of LAPB up to 50% LAPB. (ii) The salt sensitivity is maximal for the 6 wt% SDS/6 wt%

LAPB mixture, with the viscosity increasing by 5 orders of magnitude with just 0.5 wt%

added salt. (iii) The salt sensitivity reduces with even higher levels of betaine (3 wt% SDS/9

wt% LAPB), although these formulations have a much higher viscosity with no added salt.

The viscosity shows a fairly weak pH dependence in this range. Beyond betaine weight

fractions of 80%, there is a sudden drop in the viscosity with no salt thickening (data not

shown as the viscosities are too low to be measured reliably).

The effect of the fraction of LAPB on the viscosity of SDS/LAPB mixtures is very

similar to that reported by Christov et. al. [165] - they also observeb a very marked

reduction in the sphere-to-rod concentration as the fraction of betaine increases from zero to

about 50%, with a broad plateau there and increasing again for highly betaine rich mixtures.

The viscosity, and micelle size (from light scattering) also showed a corresponding non-

monotonic behavior - increasing rapidly with increasing levels of betaine and reducing at

very high levels of betaine. Thus, a novel feature of this dataset is the systematic study of

the effect of salt, in combination with using a low-salt LAPB to start with (Christov et. al.

[165] had used a more typical high salt version of CAPB in their study).
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Figure 7.4: Viscosity of 12 wt% SDS/LAPB mixtures as a function of added salt in the

pH range of 4.5-6.0. The corresponding molar compositions and mole fractions of the

surfactants are in Table. 7.2. Different colors represent data at different pH: pH 4.5 (red),

pH 5.0 (yellow), pH 5.5 (green), pH 6.0 (blue).

7.4.1.2 Effect of pH

Fig. 7.5 shows the results of the next set of experiments at lower pH (combined with

the zero-added salt data from Fig. 7.4). They key highlights are the following: (i) If the

pH is low enough, the viscosity of SDS/LAPB solutions also becomes pH dependent. (ii)

This pH dependence of the viscosity becomes apparent at higher pHs with increasing level

of betaine. Formulations containing >50% betaine show a marked pH response for pH < 5

which is close to the typical pH of commercial products (5.0-7.0).

7.4.2 NMR Titration of LAPB

The most likely explanation for the pH dependence of viscosity for SDS/LAPB

solutions is the changing protonation state of the surfactants. The sulfate group in SDS

is a very strong electrolyte with a pKa ∼-3 and is unlikely to become partially protonated
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Figure 7.5: Viscosity of 12 wt% SDS/LAPB mixtures as a function pH with no added salt.

as the pH is lowered. The pKa for the carboxylic group of LAPB has been reported

to be 1.9 by Weers et al.[166]. However, we may reasonably expect that the pKa

will be shifted higher in a mixed micelle containing anionic surfactants [167] - this is

simply due to favorable electrostatics between the protonated (and hence cationic) betaine

with the negatively charged SDS surfactants. To confirm this, we used proton NMR to

probe the protonation state of pure LAPB and 2:1 SDS/LAPB mixtures at two different

total surfactant concentrations. Peaks susceptible to changes in electron density due to

protonation-deprotonation as a result have an observable shift in position. In particular,

one can track peak positions as a function of pH by referencing NMR spectra to internal

reference standard such as an unreactive silane molecule (DSS, Disodium silanol) [168].

In Fig. 7.6, the position of two regions associated with the molecular structure of LAPB

are tracked over a wide pH range. The resulting titration curves as well as the comparison

with the thermodynamic model are shown in Fig. 7.7.
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Figure 7.6: Top: Structure of LAPB (R = C12) and the chemical moieties tracked by 1H

NMR: the methyls (red star) attached to the nitrogen in the region of 3.2 - 3.3 ppm and with

the the methylene singlet (blue star) in the region of 3.8-4.2 ppm show pH dependence on

their peak position when referenced versus a standard (Due to the low level of DSS used,

expansion of -0.04-0.04 ppm with 30x intensity to show DSS referenced to 0 ppm for all

spectra.). Bottom: NMR spectra as a function of pH: the dynamic range of the measurement

is larger in the 3.8-4.2 ppm range, and was used to track the protonation state of LAPB (data

shown for 2 wt % LAPB).
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Symbol Meaning

{CMCi}, i = 1,N Input: Set of pure component CMCs of each type of

surfactant

{Xi}, i = 1,Nsur f Input: Set of mole fractions of each surfactant

type in the micelle (e.g., SDS and total LAPB). At

concentrations far above the CMC, this is assumed to

be representative of the composition of the system.

{xi}, i = 1,N Set of mole fractions of each surfactant type (includ-

ing protonated/deprotonated forms) in the micelle. If

none of the surfactants are titrable, N = Nsur f and

xi = Xi. In this report, Nsur f = 2 and N = 3.

{µex
i = RT ln(γi)}, i = 1,N Set of excess chemical potentials or activity coeffi-

cients of the surfactants in the micelle.

{gex
i = RT xiln(γi)}, i = 1,N Set of excess free energies of each surfactant in the

micelle

{ai = xiγi}, i = 1,N Set of thermodynamic activities of each surfactant in

the micelle (and monomer) phases

{ci,mon = CMCiai}, i = 1,N Set of free monomer concentration of each surfac-

tant.

CMCmix =
[∑ (

xi
γiCMCi

)]−1
Mixed CMC of the surfactant mixture

q =
∑N

i xizi Micelle charge/Aggregation number (zi is the charge

of each surfactant type)

φ Electric potential at the micelle/water interface

Table 7.1: Different outputs from the thermodynamic micelle model. The top two rows are

inputs to the model, along with the pH and salt levels. Additional physical property inputs

are pure component pKa for each titrable surfactant (e.g., 1.9 for LAPB), and the micelle

charge densities of the each pure component micelle. In the calculations below, that is set

to 0.064z C/m2 where z is the charge of the surfactant. CMCS DS = 8 mM, CMCLAPB = 2.0

mM, CMCLAPB,+ = 1.9 mM (for the latter two, we have used the values from Rathman and

Christian [153] for the amphoteric surfactant, dodecylamine oxide as an approximation.)

The actual values don’t matter; it’s the ratio of the CMCs that matters for the Henderson-

Hasselbalch closure in the thermodynamic model.
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SDS, wt% LAPB, wt% SDS mM LAPB Total xS DS xLAPB

3 9 104.17 263.16 367.32 0.28 0.72

4 8 138.89 233.92 372.81 0.37 0.63

6 6 208.33 175.44 383.77 0.54 0.46

8 4 277.78 116.96 394.74 0.70 0.30

9 3 312.50 87.72 400.22 0.78 0.22

Table 7.2: Surfactant compositions tested in wt%, mM and mole fraction (in the micellar

phase). The molecular weight of SDS is 288 g/mol and that of LAPB is 342.5 g/mol.
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7.4.2.1 pKa of Pure LAPB

We find that in line with the measurements of Weers et al. [166], pure LAPB has

a pKa ∼ 1.9. The reason that the pKa for the carboxylic group is so low is due to the

quaternary nitrogen that is just 2 carbons away (see structure in Fig. 7.6). Indeed, Weers et

al. show that as the carbon spacing between the quaternary nitrogen and carboxylic group

increases, the pKa approaches a more typical value of ≈ 4.5, comparable to the pKa of

small carboxylic acids, e.g. acetic acid.

7.4.2.2 pKa of LAPB in LAPB/SDS Micelles

The left panel of Fig. 7.7 shows that as anticipated, there is a large pKa shift (of 1.8

units) in the presence of anionic SDS. Thus, a reasonable fraction of the betaine could be

cationic at pH ranges of 4.0-5.0 and catanionic synergy can increase the viscosity of those

solutions if the betaine fraction is high enough. It is well known that mixtures of cationic

and anionic surfactants can show very high viscosities.

Figure 7.7: Left: pH dependent NMR shift of LAPB in pure LAPB and in a 2:1 SDS/LAPB

solutions. Right: Theoretical predictions of the pKa shift using the pH-dependent regular

solution theory model of mixed micelles for different choices of βS DS/LAPB and βS DS/LAPB+ ,

and with βLAPB/LAPB+ = −2.5.
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To qualitatively test this, the viscosity of SDS/LAPB solutions (with no added salt)

as a function of the betaine NMR shift is plotted in Fig. 7.8. It is clear that for a

given SDS/LAPB ratio, the fraction of the betaine that is protonated as measured by the

NMR shift is an excellent predictor of the solution viscosity. Further, the datasets for

each SDS/LAPB ratio are roughly parallel to each other suggesting some universality in

this. This also suggests that carefully tracking the pH dependent protonation state of other

zwitterionic and titratble surfactants in micelles of different composition via NMR will

be important for developing a deeper understanding of micellar rheology when one of the

surfactants is titrable.

Figure 7.8: Correlation between measured NMR shift of LAPB with solution viscosity.

The NMR shift was not measured for each composition; instead the pH dependent NMR

shift of the betaine in the 2:1 SDS/LAPB mixture (Fig. 7.7), interpolated at the pH for

which the viscosity was measured is used for this comparison.
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7.4.2.3 Parameterizing β parameters with the pKa shift

The SDS/LAPB system is characterized by 3 beta parameters: βS DS/LAPB, βLAPB/LAPB+ ,

and βS DS/LAPB+ .

• In principle, we can characterize βLAPB/LAPB+ from the titration curve of pure LAPB

at a concentration above the CMC. However, pure LAPB has a pKa ∼ 1.9, and and

one will need to go to a very low pH ≈ 0 to observe the full titration curve which is

hard to do. A negative value of βLAPB/LAPB+ will manifest as broadening of the titration

curve (above the CMC) relative to that predicted by the Henderson-Hasselbalch form,

as shown by Rathman and Christian [153] for the zwitterionic surfactant, Dodecyl

Amino Oxide (DDAO, which has a pKa ≈ 5.0). Rathman and Christian report β

parameters of -2.8 to -3.0 between the the protonated and deprotonated form of amine

oxide. Hence, we set βLAPB/LAPB+ ≈ −2.5.

• The synergy between SDS and betaine in the context of CMC depression has been

studied by Iwasaki et. al. [169] and also modeled using MT approaches by Shiloach

and Blankschein[170]. Shiloach and Blankschtein also compared the β parameter

obtained by the MT approach with the β parameter from mixed CMC measurements

and found that βS DS/LAPB ≈ −5.0 described the data well. Note that they considered

LAPB to be purely zwitterionic - and hence needed only a single β parameter

to describe the SDS/LAPB system. This approach is valid at pH > 5.5 − 6.0

when the fraction of protonated, cationic LAPB is negligible. We thus also set

βS DS/LAPB = −5.0 in our model.

• We expect βS DS/LAPB+ to be significantly negative due to highly favorable electrostatic

effects between a cationic and an anionic surfactant (≈ −10 to −15 [171]). Since the

thermodynamic model predicts the pH titration state of LAPB, βS DS/LAPB+ can be

optimized by comparing model predictions to the NMR data. We set βLAPB/LAPB+ =
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−2.5 and calculated the pKa shift of LAPB in 2:1 SDS/LAPB mixtures as a function

of βS DS/LAPB+ for βS DS/LAPB =-4.5, -5.0 and -5.5 (right panel of Fig. 7.7). For

βS DS/LAPB = −5.0, βS DS/LAPB+ ≈ −11.6 yields a pKa shift consistent with the

experimental measurements shown in the left panel of Fig. 7.7.

Finally, although β parameters are usually quantified via mixed CMC or surface ten-

sion measurements, using NMR, as we demonstrate here, is an attractive alternative, espe-

cially for commercial surfactants which will have small levels of surface-active impurities

and a tail length distribution which makes CMC and surface tension measurements chal-

lenging. Another advantage of NMR titration over conventional titration is that the protona-

tion states of different surfactants can be tracked individually if needed (e.g., a combination

of LAPB with amino-acid based surfactants like Lauroyl sarcosinate [172, 173] or Lauroyl

alaninate that have a titrable carboxylic group).

7.5 A Semi-empirical Model of Viscosity

In this section, we demonstrate the use of the thermodynamic model to model and

interpret the zero shear viscosity measurements. Fig. 7.9 shows scatter plots of key

explanatory variables - the surfactant excess chemical potentials, µex
i /kbT =ln(γi), and

the micelle water electric potential against each other and against the measured zero shear

viscosity. The corresponding correlation coefficients are reported in Table. 7.3. We observe

several interesting trends:
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Figure 7.9: A pair-plot of the correlations between calculated ln(γi), the micelle water

electric potential, ψ and the measured zero shear viscosity for different SDS/LAPB ratios

and variable salt levels. The correlalation coefficients are also reported in Tab. 7.3. The

points are colored by the mole fraction of SDS.

This micelle/water potential, ψ is very negative (∼-100 mV) for pure SDS micelles and

reduces with added salt or with adding LAPB. It also seems to be a much better predictor

of the viscosity than the log(CMC) or the micelle charge (q =
∑

xizi) (see Fig. S1 and Fig.

S2 in the Supporting Information); in fact, although statistically, ln(γLAPB,+) is the single

best predictor of viscosity, from a mechanistic perpsective, it could be argued that ψ is

the most interpretable explanatory variable (especially since both ln(γS DS ) and ln(γLAPB,+)

are highly correlated with ψ, Table 7.3). Reducing the magnitude of ψ makes it easier
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ln(γS DS ) ln(γLAPB) ln(γLAPB+) ψ, mV ln(η)

ln(γS DS ) 1.0 -0.32 -0.83 -0.99 -0.67

ln(γLAPB) -0.32 1.0 0.74 0.37 0.6

ln(γLAPB+) -0.83 0.74 1.0 0.88 0.85

ψ, mV -0.99 0.37 0.88 1.0 0.74

ln(η) -0.67 0.6 0.85 0.74 1.0

xS DS 0.4 -0.98 -0.75 -0.44 -0.58

Table 7.3: Correlation coefficients between modeled surfactant excess chemical potential,

micelle water electric potentials and experimentally measured viscosities.

free energetically to incorporate the majority ionic species into the micelle and increase

the viscosity. In the SDS/LAPB system, that majority ionic species is SDS. If we were in a

system that contained a cationic surfactant (e.g., CTAB) along with a titrable surfactant that

switched between anionic and neutral with pH, we anticipate that the relationship would

be reversed, and an increase in viscosity being correlated with an increase in the chemical

potential of the anionic species.

That the electric potential determines the energetics of micelle elongation in primarily

ionic surfactant systems and therefore of viscosity is also intuitive to understand.

Importantly, the correlation with the surface potential appears to hold even though the

viscosity is changing by many orders of magnitude - i.e., as we traverse micelle structures

spanning from just elongated to partially entangled to highly entangled. Finally, although

challenging, it is nevertheless possible to measure it experimentally (by e.g., zeta potentials,

potentiometric probes) for some systems and hence, it is a testable hypothesis. It also offers

a clear target for more sophisticated, chemistry specific theoretical models to model a range

of surfactants and their blends.
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7.5.1 A Bayesian Model for ln(η) based on Surfactant Chemical Activity Coefficients

γi

We next explored whether a simple linear model of the form:

ln(η) = C +
∑

wiln(γi) (7.24)

where the summation extends over the three types of surfactants, SDS, LAPB and LAPB+

can be used to model the experimental viscosity measurements. However, instead of using

a conventional regression, we use Bayesian regression (with the python package, pyMC3

[174]) to estimate the coefficients, wi and C with the following weakly informative priors:

C ∼ Normal(µ = 0, σ = 10.0) (7.25)

wi ∼ Normal(µ = 0, σ = 5.0) (7.26)

and the following likelihood function:

s ∼ HalfNormal(σ = 2.0) (7.27)

Probability(ln(η)|C, {wi}) ∼ Normal(µ = C +
∑

wiln(γi), σ = s) (7.28)

Fig. 7.10 shows the results of the Bayesian regression and shows that simple semi-

empirical models can be useful to model these complex systems. A Bayesian approach

provides several advantages over a conventional regression:

• Uncertainty quantification: The posterior provides the joint distribution of the

parameters, θ = {C, {wi}} instead of point estimates and hence the uncertainty in

the predictions can be quantified.

• Philosophically, the Bayesian approach treats ‘data’ and ‘parameters’ on an equal

footing, recognizing that they both have uncertainties and that there is no single

‘true’ parameter value[175]. In a model such as Eqn. 7.24, C and wi are not
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Figure 7.10: Results of the Bayesian regression: the solid line is the X = Y line; error

bars show the 1 standard deviation prediction interval. The R2 for the model mean is

0.746. The marginal parameter estimates and the standard deviations are: C = 1.13± 0.18,

wS DS = 1.48 ± 0.54, wLAPB = −1.18 ± 0.45 and wLAPB+ = 4.85 ± 0.76, and s = 1.69 ± 0.13.

the only parameters that have to be estimated; ln(γi) are complex functions of the

thermodynamic parameters (e.g., β parameters, CMCs etc), and there is uncertainity

in our estimates of these parameters as well (indeed, even the RST model augmented

with electrostatics at the Poisson-Boltzmann level is only an approximation). In

effect, as a practical approach for computational efficiency, we have fixed those

parameters to our best estimates and are assigning all the uncertainty to our estimates

of C and wi.
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• Extension to other surfactant systems: Bayesian models lend themselves very

naturally to a ‘hierarchical’ or ‘multi-level’ model structure[175]. For small changes

to the surfactant architecture, it might be a reasonable approximation to leave the

thermodynamic parameters fixed if they are not known (or update them as best as

possible with heuristics and available experimental measurements) and model the

experimental viscosities with slightly different {C, {wi}} such that most of the essential

physics is still captured. And in a hierarchical model, the parameters Ck, {wk
i } for

different surfactant blends can be drawn from corresponding parent distributions (or

hyperparameters, Cglobal, {wglobal
i }) so that a diverse data set with multiple surfactant

blends can be analyzed robustly.

Finally, we comment on the difference between the approach presented here and that

presented recently in e.g., Danov et. al., [149–152] or in Christov et. al., [165] where

micelle elongation (which can perhaps eventually be related to viscosity) was modeled

by calculating the difference in the excess chemical potentials of the surfactants in the

cylindrical vs the spherical endcaps - i.e., ∆µ = µcyl−µsph. This difference for an individual

surfactant is small, ∼ 0.05 − 0.1kbT , but the net driving force becomes large as this is

multiplied by the aggregation number, N ∼ 102 − 103. Nevertheless, since ∆µ is small, the

fidelity needed from a model will be challenging to achieve while simultaneously being

able to handle a wide-range of surfactant headgroup chemistries with accuracy - definitely

beyond the capabilities of a relatively simple RST-based approach. However, this simpler

framework is a scalable and practical approach in an industrial setting where predictions

have to be made on a diverse set of industrial grade raw materials with impurities, and

somewhat broad chain length distributions.
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7.6 Conclusion

In this paper, we have presented new experimental data of the viscosity of SDS/LAPB

mixtures over a range of salt and pH levels. The results are consistent with the strong

‘synergy’ seen for SDS/LAPB mixtures reported in earlier studies [165, 170, 176] and

results on the effect of salt and especially pH are new. That LAPB, with a pKa of 1.9 can

become partially cationic in a mixed micelle with anionic surfactants and the importance

of this for micelle elongation and viscosity is a novel finding, as is our use of NMR

experiments to obtain β parameters between surfactants.

Our approach of using a relatively simple thermodynamic model to calculate the

pH, composition and salt concentration dependent activity coefficients of surfactants in a

Bayesian framework to semi-empirically model the viscosity of these micellar solutions is a

good example of combining theoretical rigor with pragmatism for industrial or commercial

applications. It provides a facile and extensible way to combine molecular information

with experimentally measured macroscopic properties. Beyond viscosity, we anticipate

that such a Bayesian semi-empirical approach can be used for modeling other macroscopic

properties - e.g., relating model-derived surfactant activity coefficients (and other quantities

such as the micelle/water electric potential and micelle charge densities) to experimental

measurements of lather volume or longevity under different conditions, phase behavior

with polyelectrolytes, and other applications. The thermodynamic framework can be made

more rigorous if needed while striking a balance between complexity and practicality.
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8 Conclusions and FutureWork

The main focus of this research has been to understand the adsorption and self-

assembly of surfactant molecules at metallic surfaces using molecular simulations. For

this purpose, we have developed a coarse-grained model of surfactant molecules and have

studied various aspects of the adsorption phenomena.

8.1 Summary of Results

Our results not only provide a molecular-level understanding of the adsorption

of corrosion inhibitor molecules on metal surfaces, but they also test currently held

assumptions on the nature of adsorption of these molecules and help in providing

new insights. Our work also proposes a new theoretical model to predict adsorption

morphologies of these molecules on surfaces. The main findings of this work are listed

below.

• It is found that the hydrophobic interactions between alkyl tails of corrosion inhibitor

molecules plays an important role in the adsorption and self-assembly of adsorbed

molecules in ordered configurations. When hydrophobic interactions between the

alkyl tails are turned weak, the molecules do not form highly packed SAM on the

surface even when the polar group has strong affinity for the surface. The other end

of the spectrum is when the hydrophobic interactions are made quite strong. In such

a scenario, the molecules aggregate in the bulk and thus the adsorption amount on

the surface reduces.

• It is shown that the geometry of the inhibitor molecules is an important determinant

of the adsorption morphology. The molecules with a larger polar head beads are

found to adsorb as cylindrical and spherical micelles.
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• The strength of the affinity of metal surfaces for polar beads alter the kinetics of

adsorption. However, eventually a SAM is achieved if the affinity is above a critical

value because after the initial adsorption, the latter adsorption regimes are dictated

by lateral tail-tail interactions.

• We find that oil molecules of some optimum length are able to co-adsorb with the

corrosion inhibitor films. Interestingly, it is observed that co-adsorbing oil molecules

result in transforming a cylindrical morphology of the corrosion inhibitor film into a

planar morphology, thereby making the inhibitor film more densely packed and more

hydrophobic. Experiments have shown that presence of oil molecules, either in the

aqueous phase, or via exposing the film to oil results in better corrosion inhibition

efficiency.

• We have developed a theoretical model that is able to predict the adsorption

morphology of corrosion inhibitor molecules on the metal surface. Our simulation

results show that our model is quantitatively accurate in the predictions and does

not require any fitting parameter. This model will be quite useful in predicting the

adsorption morphology without the need to perform simulations.

• We show that inhibitor molecules are able to achieve full adsorption coverage even

when the surface is heterogeneous with large areas that are not attractive to the

molecules. Full coverage is achieved because of the lateral hydrophobic interactions

between the molecules.

8.2 Future work

The research presented in this dissertation has revealed many interesting insights into

the adsorption of surfactant molecules on polar surfaces, but at the same time, many aspects
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have not been addressed. I would like to propose a few potential areas of extension of the

work discussed in this research.

• Study of co-adsorption of inhibitor molecules with different tail lengths. In our

simulations, the inhibitor molecules used in each system are of same size. However,

in field conditions, inhibitors in the commercially available inhibitor package are

presumably of varying tail lengths. Therefore, it will be interesting to study if

mixtures of inhibitors improves the adsorption behavior of these molecules via some

synergistic effect.

• Estimating the free energy of different adsorbed configurations. In our studies,

we have not compared the free energies between various adsorbed configurations. By

generating a free energy landscape as a function of some appropriate order parameter,

say the number of adsorbed molecules, will provide insights into meta-stable as well

as globally stable configurations.

• Exploring adsorption in different surface chemistry and including roughness.

In our simulation system, the metal surface was modeled as a smooth surface with

a Lennard Jones interactions. The current system can be extended where the metal

surface is modeled as a lattice of atoms, and furthermore, one can consider the effects

of nanometer-sized roughness on the adsorption behavior.
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